Authors:

I GEDE HARDI KARMANA, LUH PUTU IDA HARINI, KETUT JAYANEGARA, I PUTU EKA NILA KENCANA

Abstract:

“This study aimed to apply glowworm swarm optimization (GSO) algorithm as an alternate way to obtain optimal bandwidth in geographically weighted regression (GWR) model with adaptive kernel function. The result showed that GSO was able to obtain optimal bandwidth with lower cross validation (CV) value than the traditional way that was using k-nearest neighbor (KNN) algorithm. Unfortunately, the running time of GSO was far slower than KNN was.”

Keywords

Keyword Not Available

Downloads:

Download data is not yet available.

References

References Not Available

PDF:

https://jurnal.harianregional.com/mtk/full-57294

Published

2020-01-31

How To Cite

KARMANA, I GEDE HARDI et al. PENERAPAN ALGORITMA GLOWWORM SWARM OPTIMIZATION PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION DENGAN KERNEL ADAPTIF.E-Jurnal Matematika, [S.l.], v. 9, n. 1, p. 79-84, jan. 2020. ISSN 2303-1751. Available at: https://jurnal.harianregional.com/mtk/id-57294. Date accessed: 28 Aug. 2025. doi:https://doi.org/10.24843/MTK.2020.v09.i01.p282.

Citation Format

ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian

Issue

Vol 9 No 1 (2020)

Section

Articles

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License