ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
on
Authors:
F. MUHAMMAD ZAIN, M. GARDA KHADAFI, P. H. GUNAWAN
Abstract:
“The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.”
Keywords
Keyword Not Available
Downloads:
Download data is not yet available.
References
References Not Available
PDF:
https://jurnal.harianregional.com/mtk/full-37596
Published
2018-02-03
How To Cite
ZAIN, F. MUHAMMAD; KHADAFI, M. GARDA; GUNAWAN, P. H.. ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI.E-Jurnal Matematika, [S.l.], v. 7, n. 1, p. 1-4, feb. 2018. ISSN 2303-1751. Available at: https://jurnal.harianregional.com/mtk/id-37596. Date accessed: 28 Aug. 2025. doi:https://doi.org/10.24843/MTK.2018.v07.i01.p176.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 7 No 1 (2018)
Section
Articles
Copyright
 This work is licensed under a Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback