Authors:

HANY DEVITA, I KOMANG GDE SUKARSA, I PUTU EKA N. KENCANA

Abstract:

“Ordinary least square is a parameter estimations for minimizing residual sum of squares. If the multicollinearity was found in the data, unbias estimator with minimum variance could not be reached. Multicollinearity is a linear correlation between independent variabels in model. Jackknife Ridge Regression(JRR) as an extension of Generalized Ridge Regression (GRR) for solving multicollinearity. Generalized Ridge Regression is used to overcome the bias of estimators caused of presents multicollinearity by adding different bias parameter for each independent variabel in least square equation after transforming the data into an orthoghonal form. Beside that, JRR can reduce the bias of the ridge estimator. The result showed that JRR model out performs GRR model.”

Keywords

Keyword Not Available

Downloads:

Download data is not yet available.

References

References Not Available

PDF:

https://jurnal.harianregional.com/mtk/full-11996

Published

2014-11-28

How To Cite

DEVITA, HANY; SUKARSA, I KOMANG GDE; N. KENCANA, I PUTU EKA. KINERJA JACKKNIFE RIDGE REGRESSION DALAM MENGATASI MULTIKOLINEARITAS.E-Jurnal Matematika, [S.l.], v. 3, n. 4, p. 146 - 153, nov. 2014. ISSN 2303-1751. Available at: https://jurnal.harianregional.com/mtk/id-11996. Date accessed: 28 Aug. 2025. doi:https://doi.org/10.24843/MTK.2014.v03.i04.p077.

Citation Format

ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian

Issue

Vol 3 No 4 (2014)

Section

Articles

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License