Authors:

Ni Putu Ayu Triana, Luh Gede Astuti

Abstract:

“Fuzzy C-Means (FCM) is an algorithm in the process of data clustering that has limitations in the form of being sensitive to the parameters used so that in some cases, the final solution provided is not an optimal solution. One of the influential parameters is the fuzziness level of the algorithm. This parameter is a random real number greater than 1. The determination of these parameters is adjusted to the data used and evaluated with the condition that it reaches a minimum number of iterations for convergence, a small objective final value, and a DBI cluster validity value close to 0. In this study, Indonesian automotive sales data received the optimal algorithm fuzzy level parameter at a value of 2 with other fixed parameters, such as the number of clusters is 3, the smallest error expected to be is 0.00001, and the maximum iteration is 100.”

Keywords

Keyword Not Available

Downloads:

Download data is not yet available.

References

References Not Available

PDF:

https://jurnal.harianregional.com/jnatia/full-92640

Published

2022-11-25

How To Cite

TRIANA, Ni Putu Ayu; ASTUTI, Luh Gede. Penentuan Parameter Tingkat Ke-Fuzzy-an Fuzzy C-Means dan Pengaruhnya Terhadap Proses Algoritma.Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 1, n. 1, p. 205-210, nov. 2022. ISSN 3032-1948. Available at: https://jurnal.harianregional.com/jnatia/id-92640. Date accessed: 08 Jul. 2024.

Citation Format

ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian

Issue

Vol 1 No 1 (2022): JNATIA Vol. 1, No. 1, November 2022

Section

Articles

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License