Implementasi Metode Optimasi Gradient Centralization untuk Pembuatan Model Klasifikasi Citra Pemandangan Alam
on
Authors:
Pasha Renaisan, I Gede Santi Astawa
Abstract:
“Optimization algorithms are algorithms that are needed to properly train Neural Networks. Optimization algorithms help improve model performance by modifying the attributes of the neural network, such as weights and learning rate to further enchant the model. Gradient Centralization is a new optimization algorithm that optimizes by centralizing gradient vectors to have zero mean. This paper focuses on finding the optimal learning rate for Gradient Centralization and uses that learning rate to create a classification model to classify natural scene images. The optimal learning rate obtained by this research is 2e-5 and the model obtained 84,17% mean recall, 84,39% mean precision, and overall 83,60% accuracy.”
Keywords
Keyword Not Available
Downloads:
Download data is not yet available.
References
- [1] Yong, H., Huang, J., Hua, X., & Zhang, L. (2020). Gradient Centralization: A New Optimization Technique for Deep Neural Networks.
- [2] O’Shea, Keiron., & Nash, Ryan. (2015). An Introduction to Convolutional Neural Networks.
- [3] R. Poojary and A. Pai, “Comparative Study of Model Optimization Techniques in Fine-Tuned CNN Models,” 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 2019, pp. 1-4, doi: 10.1109/ICECTA48151.2019.8959681.
- [4] Ondieki, B. (2015). Convolutional Neural Networks for Scene Recognition.
PDF:
https://jurnal.harianregional.com/jnatia/full-92632
Published
2022-11-25
How To Cite
RENAISAN, Pasha; ASTAWA, I Gede Santi. Implementasi Metode Optimasi Gradient Centralization untuk Pembuatan Model Klasifikasi Citra Pemandangan Alam.Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 1, n. 1, p. 389-396, nov. 2022. ISSN 3032-1948. Available at: https://jurnal.harianregional.com/jnatia/id-92632. Date accessed: 08 Jul. 2024.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 1 No 1 (2022): JNATIA Vol. 1, No. 1, November 2022
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback