IN SILICO STUDY OF Hibiscus Sabdariffa Linn. ACTIVE COMPOUNDS IN GLP-1R: POTENTIAL AS ANTIDIABETIC DRUG
on
Authors:
T. Andriani, N. Mawaddah, L. Erlina, R. K. Anggraeni, N. Ibrahim, M. Siagian
Abstract:
“Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to reduced insulin production and/or insulin resistance. GLP-1 can increase insulin secretion, improve insulin sensitivity, and lower the blood glucose levels by binding to the GLP-1 receptor (GLP-1R). Several plants have been used as antidiabetic drugs. This study aims to see the interactions of the active compounds in Hibiscus sabdariffa Linn. and GLP-1R in silico. The research started with internal validation of the receptor GLP-1 (6ORV), and then the native ligand was docked. The 6ORV receptor validation results have an RMSD value of 2.14Å. The results of docking scores of the 3 best active compounds Hibiscus sabdariffa Linn. are myricetin-3-arabinogalactoside (-10.64 kcal/mol), tetra-O-methyljeediflavanone (-9.95 kcal/mol), and ethyl chlorogenate acid (-7.73 kcal/mol). The amino acids that contribute to the affinity at the active site of the ligand bond with the receptor are Trp 297, Trp 203, Met 204, Phe 230, Try 220, Lys 197. These findings indicate that the active compound Hibiscus sabdariffa Linn. can bind directly to GLP-1R. Keywords: Diabetes mellitus, Hibiscus sabdariffa Linn., GLP-1R ABSTRAK Diabetes melitus merupakan gangguan metabolisme yang ditandai dengan kondisi hiperglikemia akibat produksi insulin yang berkurang dan atau kondisi resistensi insulin. GLP-1 dapat meningkatkan sekresi, sensitivitas insulin, dan menurunkan kadar glukosa darah dengan cara mengikat reseptor GLP-1 (GLP-1R). Beberapa tanaman telah digunakan sebagai obat antidiabetes. Penelitian ini bertujuan untuk melihat bagaimana interaksi senyawa aktif dalam Hibiscus sabdariffa Linn. terhadap GLP-1R secara in silico. Penelitian dimulai dengan melakukan validasi internal reseptor GLP-1 (6ORV) kemudian dilakukan proses docking terhadap native ligand. Hasil validasi reseptor 6ORV mempunyai nilai RMSD 2.14Å. Hasil score docking 3 senyawa aktif Hibiscus sabdariffa Linn. terbaik adalah myricetin-3-arabinogalactoside (-10,64 kcal/mol), tetra-O-methyljeediflavanone (-9,95 kcal/mol), dan ethyl chlorogenate acid (-7,73 kcal/mol). Asam amino yang berperan terhadap afinitas pada sisi aktif ikatan ligan dengan reseptor adalah Trp 297, Trp 203, Met 204, Phe 230, Try 220, Lys 197. Temuan ini menunjukkan bahwa senyawa aktif Hibiscus sabdariffa Linn. dapat berikatan langsung dengan GLP-1R. Kata kunci: Diabetes melitus, Hibiscus sabdariffa Linn., GLP-1R”
Keywords
Diabetes mellitus, Hibiscus sabdariffa Linn., GLP-1R ABSTRAK Diabetes melitus merupakan gangguan metabolisme yang ditandai dengan kondisi hiperglikemia akibat produksi insulin yang berkurang dan atau kondisi resistensi insulin. GLP-1 dapat meningkatkan sekresi, sensitivitas insulin, dan menurunkan kadar glukosa darah dengan cara mengikat reseptor GLP-1 (GLP-1R). Beberapa tanaman telah digunakan sebagai obat antidiabetes. Penelitian ini bertujuan untuk melihat bagaimana interaksi senyawa aktif dalam Hibiscus sabdariffa Linn. terhadap GLP-1R secara in silico. Penelitian dimulai dengan melakukan validasi internal reseptor GLP-1 (6ORV) kemudian dilakukan proses docking terhadap native ligand. Hasil validasi reseptor 6ORV mempunyai nilai RMSD 2.14Å. Hasil score docking 3 senyawa aktif Hibiscus sabdariffa Linn. terbaik adalah myricetin-3-arabinogalactoside (-10, 64 kcal/mol), tetra-O-methyljeediflavanone (-9, 95 kcal/mol), dan ethyl chlorogenate acid (-7, 73 kcal/mol). Asam amino yang berperan terhadap afinitas pada sisi aktif ikatan ligan dengan reseptor adalah Trp 297, Trp 203, Met 204, Phe 230, Try 220, Lys 197. Temuan ini menunjukkan bahwa senyawa aktif Hibiscus sabdariffa Linn. dapat berikatan langsung dengan GLP-1R. Kata kunci: Diabetes melitus, Hibiscus sabdariffa Linn., GLP-1R
Downloads:
Download data is not yet available.
References
- Baggio, L. L., & Drucker, D. J. 2007. Biology of Incretins: GLP-1 and GIP. Gastroenterology. 132(6): 2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054
- Biessels, G. J., & Reagan, L. P. 2015. Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews Neuroscience. 16(11): 660–671. https://doi.org/10.1038/nrn4019
- Brito, M. A. de. 2011. Pharmacokinetic study with computational tools in the medicinal chemistry course. Brazilian Journal of Pharmaceutical Sciences. 47(4): 797–805. https://doi.org/10.1590/S1984-82502011000400017
- Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. 2012. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. https://doi.org/10.1021/ci300367a
- Cho, Y. M., Fujita, Y., & Kieffer, T. J. 2014. Glucagon-Like Peptide-1: Glucose Homeostasis and Beyond. Annual Review of Physiology. 76(1): 535–559. https://doi.org/10.1146/annurev-physiol-021113-170315
- Daniels, D., & Mietlicki-Baase, E. G. 2019. Glucagon-like peptide 1 in the brain: Where is it coming from, where is it going? Diabetes. 68(1): 15–17. https://doi.org/10.2337/dbi18-0045
- Domínguez Avila, J. A., Rodrigo García, J., González Aguilar, G. A., & de la Rosa, L. A. 2017. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules. 22(6): 1–16. https://doi.org/10.3390/molecules22060903
- Ece, A. 2018. E-Pharmacophore Mapping Combined with Virtual Screening and Molecular Docking to Identify Potent and Selective Inhibitors of P90 Ribosomal S6 Kinase (RSK). Turkish Journal of Pharmaceutical Sciences. 13(2): 241–248. https://doi.org/10.4274/tjps.28290
- Faridah, F., Sumaryono, W., Simanjuntak, P., & Triwibowo, R. R. 2021. Analysis of Pancreatic Lipase Inhibitor Activity of Chlorogenic Acid Derivatives in Green Coffee Beans as Antiobesity using In Silico. Jurnal Ilmu Kefarmasian Indonesia. 19(1): 125. https://doi.org/10.35814/jifi.v19i1.946
- Fujiwara, Y., Eguchi, S., Murayama, H., Takahashi, Y., Toda, M., Imai, K., & Tsuda, K. 2019. Relationship between diet/exercise and pharmacotherapy to enhance the GLP‐1 levels in type 2 diabetes. Endocrinology, Diabetes & Metabolism. 2(3): 1–14. https://doi.org/10.1002/edm2.68
- Guardiola, S., & Mach, N. 2014. Therapeutic potential of Hibiscus sabdariffa: A review of the scientific evidence. Endocrinología y Nutrición (English Edition). 61(5), 274–295. https://doi.org/10.1016/j.endoen.2014.04.003
- Haider, M. K. 2010. Computational Analysis of Protein-Ligand Interaction. In Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry. University of York. https://doi.org/10.5059/yukigoseikyokaishi.54.427
- Herranz-López, M., Olivares-Vicente, M., Encinar, J., Barrajón-Catalán, E., Segura-Carretero, A., Joven, J., & Micol, V. 2017. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients. 9(8): 907. https://doi.org/10.3390/nu9080907
- International Diabetes Federation. 2021. International Diabetes Federation. In Diabetes Research and Clinical Practice (10th ed., Vol. 102, Issue 2). https://doi.org/10.1016/j.diabres.2013.10.013
- Jabeur, I., Pereira, E., Barros, L., Calhelha, R. C., Soković, M., Oliveira, M. B. P. P., & Ferreira, I. C. F. R. 2017. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International. 100: 717–723. https://doi.org/10.1016/j.foodres.2017.07.073
- Kartinah, N. T., Fadilah, F., Ibrahim, E. I., & Suryati, Y. 2019. The Potential of Hibiscus sabdariffa Linn in Inducing Glucagon-Like Peptide-1 via SGLT-1 and GLPR in DM Rats. BioMed Research International. 2019: 1–8. https://doi.org/10.1155/2019/8724824
- Kim, J., Kwon, J., Kim, M., Do, J., Lee, D., & Han, H. 2016. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Polymer Journal. 48(7): 829–834. https://doi.org/10.1038/pj.2016.37
- Kodl, C. T., & Seaquist, E. R. 2008. Cognitive Dysfunction and Diabetes Mellitus. Endocrine Reviews. 29(4): 494–511. https://doi.org/10.1210/er.2007-0034
- Lipinski, C. A. 2004. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies. 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
- Ma, X., Guan, Y., & Hua, X. 2014. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. Journal of Diabetes. 6(5): 394–402. https://doi.org/10.1111/1753-0407.12161
- Manna, A., Laksitorini, M. D., Hudiyanti, D., & Siahaan, P. 2017. Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns. Jurnal Kimia Sains Dan Aplikasi,. 20(1): 30–36. https://doi.org/10.14710/jksa.20.1.30-36
- Motiejunas, D., & Wade, R. C. 2006. Structural, energetic, and dynamic aspects of ligand-receptor interactions. Comprehensive Medicinal Chemistry II. 4: 193–212. https://doi.org/10.1016/b0-08-045044-x/00250-9
- Müller, T. D., Finan, B., Bloom, S. R., Alessio, D. D., Drucker, D. J., Flatt, P. R., & Fritsche, A. 2019. Glucagon-like peptide 1 (GLP-1). Molecular Metabolism. 30(September): 72–130. https://doi.org/10.1016/j.molmet.2019.09.010
- Muttaqin, F. Z. 2019. Molecular Docking and Molecular Dynamic Studies of Stilbene Derivative Compounds As Sirtuin-3 (Sirt3) Histone Deacetylase Inhibitor on Melanoma Skin Cancer and Their Toxicities Prediction. Journal of Pharmacopolium. 2(2): 112–121. https://doi.org/10.36465/jop.v2i2.489
- Natesan, S., Subramaniam, R., Bergeron, C., & Balaz, S. 2012. Binding affinity prediction for ligands and receptors forming tautomers and ionization species: Inhibition of mitogen-activated protein kinase-activated protein kinase 2 (MK2). Journal of Medicinal Chemistry. 55(5): 2035–2047. https://doi.org/10.1021/jm201217q
- Pena Neshich, I., Nishimura, L., de Moraes, F., Salim, J., Villalta-Romero, F., Borro, L., Yano, I., Mazoni, I., Tasic, L., Jardine, J., & Neshich, G. 2015. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design. Current Protein & Peptide Science. 16(8): 701–717. https://doi.org/10.2174/1389203716666150505234923
- Puratchikody, A., Sriram, D., Umamaheswari, A., & Irfan, N. 2016. 3 ‑ D structural interactions and quantitative structural toxicity studies of tyrosine derivatives intended for safe potent inflammation treatment. Chemistry Central Journal. 1–19. https://doi.org/10.1186/s13065-016-0169-9
- Reid, T. 2012. Choosing GLP-1 Receptor Agonists or DPP-4 Inhibitors: Weighing the Clinical Trial Evidence. 30(1): 3–12. https://diabetesjournals.org/clinical/article/30/1/3/35430/Choosing-GLP-1-Receptor-Agonists-or-DPP-4
- Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice. 157: 107843. https://doi.org/10.1016/j.diabres.2019.107843
- Soelistijo, S. 2021. Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2021. Global Initiative for Asthma, 46. www.ginasthma.org.
- Trujillo, J. M., Nuffer, W., & Smith, B. A. 2021. GLP-1 receptor agonists : an updated review of head-to-head clinical studies. 1–15. https://doi.org/10.1177/2042018821997320
- Umadevi, P., Manivannan, S., Fayad, A. M., & Shelvy, S. 2022. In silico analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics. 40(11): 5053–5059. https://doi.org/10.1080/07391102.2020.1866669
- Vargas, J. A. R., Lopez, A. G., Piñol, M. C., & Froeyen, M. 2018. Molecular docking study on the interaction between 2-substituted-4,5-difuryl Imidazoles with different protein target for antileishmanial activity. Journal of Applied Pharmaceutical Science. 8(3): 14–22. https://doi.org/10.7324/JAPS.2018.8303
- Wharton, S., Davies, M., Dicker, D., Lingvay, I., Mosenzon, O., Rubino, D. M., & Pedersen, S. D. 2022. Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity : recommendations for clinical practice. Postgraduate Medicine. 134(1): 14–19. https://doi.org/10.1080/00325481.2021.2002616
- Yang, H., Chaofeng, L., Lixia, S., Jie, L., Yingchun, C., Zhuang, W., Weihua, L., Guixia, L., & Yun, T. 2017. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 33(16),: 1–7. https://doi.org/10.1093/bioinformatics/bty707/5085368
- Yildirim Simsir, I., Soyaltin, U. E., & Cetinkalp, S. 2018. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 12(3): 469–475. https://doi.org/10.1016/j.dsx.2018.03.002
PDF:
https://jurnal.harianregional.com/jchem/full-98556
Published
2023-07-30
How To Cite
ANDRIANI, T. et al. IN SILICO STUDY OF Hibiscus Sabdariffa Linn. ACTIVE COMPOUNDS IN GLP-1R: POTENTIAL AS ANTIDIABETIC DRUG.Jurnal Kimia (Journal of Chemistry), [S.l.], p. 118-128, july 2023. ISSN 2599-2740. Available at: https://jurnal.harianregional.com/jchem/id-98556. Date accessed: 28 Aug. 2025.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol. 17, No.2, Juli 2023
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback