PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS
on
Authors:
NI KETUT TRI UTAMI, I KOMANG GDE SUKARSA
Abstract:
“Ordinary least square is parameter estimation method for linier regression analysis by minimizing residual sum of square. In the presence of multicollinearity, estimators which are unbiased and have a minimum variance can not be generated. Multicollinearity refers to a situation where regressor variables are highly correlated. Generalized Ridge Regression is an alternative method to deal with multicollinearity problem. In Generalized Ridge Regression, different biasing parameters for each regressor variables were added to the least square equation after transform the data to the space of orthogonal regressors. The analysis showed that Generalized Ridge Regression was satisfactory to overcome multicollinearity.”
Keywords
Keyword Not Available
Downloads:
Download data is not yet available.
References
References Not Available
PDF:
https://jurnal.harianregional.com/mtk/full-4924
Published
2013-01-30
How To Cite
UTAMI, NI KETUT TRI; SUKARSA, I KOMANG GDE. PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS.E-Jurnal Matematika, [S.l.], v. 2, n. 1, p. 54-59, jan. 2013. ISSN 2303-1751. Available at: https://jurnal.harianregional.com/mtk/id-4924. Date accessed: 28 Aug. 2025. doi:https://doi.org/10.24843/MTK.2013.v02.i01.p029.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 2 No 1 (2013): E-Jurnal Matematika
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback