Implementasi Algoritma K-Nearest Neighbor (K-NN) dalam Deteksi Dini Penyakit Hepatitis C
on
Authors:
Ni Made Rika Padeswari Kusuma, Luh Gede Astuti
Abstract:
“According to the World Health Organization (WHO), Hepatitis is an inflammatory condition that can evolve into Cirrhosis or liver cancer. Hepatitis is a disease that is caused by several types of viruses that attack and cause inflammation and damage to the cells of the human liver. Hepatitis C Virus (HCV) is one of the viruses that caused hepatitis and is considered the biggest impact among the other viruses that caused hepatitis. This study uses a classification method with the K-Nearest Neighbor (KNN) algorithm to detect the onset of hepatitis C in patients based on data from the patient’s laboratory checks. The classification method with K-Nearest Neighbor (KNN) algorithm is carried out by comparing the neighbors between test data and train data based on the patient’s medical history. The tuning parameter is used to determine the number of neighbors or the value of K in K-Nearest Neighbor (KNN) which obtains 92% of accuracy, 92% of precision, and 99% of recall with an 80:20 ratio of training data and test data.”
Keywords
Keyword Not Available
Downloads:
Download data is not yet available.
References
- [1] Darsin and M. F. Sesunan, “PERANCANGAN SISTEM PENDIAGNOSA PENYAKIT HEPATITIS DENGAN METODE CASE BASED REASONING (CBR),” Jurnal Sistem Informasi dan Sains Teknologi, vol. 1, no. 2, pp. 1–7, 2019.
- [2] Alhawaris, “Hepatitis C: Epidemiologi, Etiologi, dan Patogenitas,” Jurnal Sains dan Kesehatan, vol. 2, no. 2, pp. 139–150, Dec. 2019, doi: 10.25026/jsk.v2i2.132.
- [3] A. Saraswati, TA Larasati, and Suharmanto, “FAKTOR RISIKO TERJADINYA PENYAKIT HEPATITIS C,” Bandar Lampung, May 2022. [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP
- [4] W. Dwi Septiani, “ALGORITMA NAÏVE BAYES UNTUK PREDIKSI PENYAKIT HEPATITIS,” Aug. 2022.
- [5] M. F. Rahman, M. Ilham Darmawidjadja, and D. Alamsah, “KLASIFIKASI UNTUK DIAGNOSA DIABETES MENGGUNAKAN METODE BAYESIAN REGULARIZATION NEURAL NETWORK (RBNN),” 2017.
- [6] D. Kartini, A. Farmadi, Muliadi, D. Turianto Nugrahadi, and Pirjatullah, “Perbandingan Nilai K pada Klasifikasi Pneumonia Anak Balita Menggunakan K-Nearest Neighbor,” 2022.
PDF:
https://jurnal.harianregional.com/jnatia/full-92621
Published
2022-11-25
How To Cite
KUSUMA, Ni Made Rika Padeswari; ASTUTI, Luh Gede. Implementasi Algoritma K-Nearest Neighbor (K-NN) dalam Deteksi Dini Penyakit Hepatitis C.Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 1, n. 1, p. 197-204, nov. 2022. ISSN 3032-1948. Available at: https://jurnal.harianregional.com/jnatia/id-92621. Date accessed: 08 Jul. 2024.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 1 No 1 (2022): JNATIA Vol. 1, No. 1, November 2022
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback