Akurasi Klasifikasi Kualitas Wine Menggunakan Algoritma Random Forest Dengan Min-Max Normalization
on
Authors:
Putu Putri Pratiwi, Ida Bagus Made Mahendra
Abstract:
“In this research, we will discuss the use of the Random Forest algorithm in classifying wine quality using Min-Max normalization. The data obtained will be subjected to data preprocessing and data normalization using Min-Max Normalization which is then applied to the Random Forest algorithm. This algorithm was chosen because it can provide good accuracy for the classification process. Data normalization and preprocessing are needed to produce a classification model with better accuracy. Min-Max normalization is used because it can improve the performance of the Random Forest algorithm in increasing accuracy. Keywords: Random Forest, Min-Max Normalization, Accuracy”
Keywords
Random Forest, Min-Max Normalization, Accuracy
Downloads:
Download data is not yet available.
References
References Not Available
PDF:
https://jurnal.harianregional.com/jnatia/full-102457
Published
2024-01-15
How To Cite
PRATIWI, Putu Putri; MAHENDRA, Ida Bagus Made. Akurasi Klasifikasi Kualitas Wine Menggunakan Algoritma Random Forest Dengan Min-Max Normalization.Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 2, n. 2, p. 389-392, jan. 2024. ISSN 3032-1948. Available at: https://jurnal.harianregional.com/jnatia/id-102457. Date accessed: 02 Jun. 2025.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 2 No 2 (2024): JNATIA Vol. 2, No. 2, Februari 2024
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback