Klasifikasi Musik Berdasarkan Genre Menggunakan Metode K-Nearest Neighbor
on
Authors:
William Soeparman, I Ketut Gede Suhartana
Abstract:
“Currently the amount of music in digital form continues to increase rapidly. This causes manual genre labeling of music to be inefficient. Genre labeling can be done automatically using artificial intelligence algorithms. The artificial intelligence algorithm used is an algorithm that can classify music based on genre by using the features contained in the music. This study discusses the classification of music based on genre using the K-Nearest Neighbor method or algorithm and 6 musical features, namely beat, energy, danceability, loudness, liveness, and valence. The accuracy value in this study is 54.3%. Keywords: Music clasification, music genre, k-nearest neighbor”
Keywords
Music clasification, music genre, k-nearest neighbor
Downloads:
Download data is not yet available.
References
References Not Available
PDF:
https://jurnal.harianregional.com/jnatia/full-102053
Published
2024-02-01
How To Cite
SOEPARMAN, William; SUHARTANA, I Ketut Gede. Klasifikasi Musik Berdasarkan Genre Menggunakan Metode K-Nearest Neighbor.Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 2, n. 2, p. 319-326, feb. 2024. ISSN 3032-1948. Available at: https://jurnal.harianregional.com/jnatia/id-102053. Date accessed: 28 Aug. 2025.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 2 No 2 (2024): JNATIA Vol. 2, No. 2, Februari 2024
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback