Integrasi Teknologi Pengering Surya dan Tungku Gasifikasi Biomassa Untuk Peningkatan Kualitas Beras
on
Authors:
Lukas Kano Mangalla, Agustinus Lolok, Yulius Barra Pasolon
Abstract:
“Teknologi pengeringan pascapanen produksi pertanian sangat penting dikembangkan untuk menjamin kualitas dan penyimpanan bahan. Pengembangan teknologi pengeringan energi matahari masih terbatas oleh kondisi alami sehingga tidak berlangsung kontinu. Karena itu pengeringan ini perlu diintegrasikan dengan unit sumber energi lainnya seperti biomassa, angin dan lain-lain. Kajian ini menganalisis secara comprehensive kedua sumber energy yang potensial dikembangkan di Desa Pombulaa Jaya Kecamatan Konda Sulawesi Tenggara sebagai daerah yang memiliki lahan pertanian khususnya padi sawah yang cukup luas. Dalam artikel ini disajikan tinjauan sistematik dari konsep dasar teknologi pengeringan matahari yang dikombinasikan dengan pemanas energi biomassa limbah panen untuk pengeringan pasca panen khususnya gabah padi sawah. Dilakukan pula pengujian distribusi perpindahan panas dalam ruang pengeringan dengan backup biomassa serta mendiskusikan kualitas produk pengeringan yang dipengaruhi oleh temperature, kandungan air bahan (moisture) dan ketebalan lapisan gabah. Pengembangan desain dan proses optimalisasi distribusi panas matahari sangat penting untuk meningkatkan kualitas produksi pertanian pasca panen. Hasil kajian ini merupakan bagian dari kegiatan Program Matching Fund tahun 2022”
Keywords
Keyword Not Available
Downloads:
Download data is not yet available.
References
- [1] S. Yilmaz and H. Selim, “A review on the methods for biomass to energy conversion systems design,” Renew. Sustain. Energy Rev., vol. 25, pp. 420–430, 2013, doi: 10.1016/j.rser.2013.05.015.
- [2] M. Anshar, A. S. Kader, and F. N. Ani, “The utilization potential of rice husk as an alternative energy source for power plants in Indonesia,” Adv. Mater. Res., vol. 845, pp. 494–498, 2014, doi: 10.4028/www.scientific.net/AMR.845.494.
- [3] B. Triyono, M. H. Gusman, D. Hutapea, P. Prawisudha, and A. D. Pasek, “State of the art teknologi hidrotermal untuk pengolahan sampah kota menjadi bahan bakar padat,” Proceeding Semin. Nas. Tah. Tek. Mesin XV (SNTTM XV), no. Snttm Xv, pp. 5–6, 2016, [Online]. Available: http://prosiding.bkstm.org/prosiding/2016/KE-068.pdf
- [4] F. Citra, G. Almira Aulia, R. Indiarto, A. Hodizah Asyifaa, F. Citra Angiputri Adiningsih, and S. Rahmalia Achmad, “Conventional And Advanced Food-Drying Technology: A Current Review,” Int. J. Sci. Technol. Res., vol. 10, no. March, p. 1, 2021, [Online]. Available: www.ijstr.org
- [5] G. Srinivasan, D. K. Rabha, and P. Muthukumar, “A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products,” Sol. Energy, vol. 229, no. March, pp. 22–38, 2021, doi: 10.1016/j.solener.2021.07.075.
- [6] S. Yakoyama and M. Yukihiko, “The Asian Biomass Handbook Support Project for Building Asian-Partnership for Society,” Japan Inst. Energy, p. 338, 2008.
- [7] B. Sudarmanta, D. B. Murtadji, and D. F. Wulandari, “Karakterisasi Gasifikasi Biomassa Sekam Padi Menggunakan Reaktor Downdraft dengan Dua Tingkat Laluan Udara,” J. Tek. Mesin, vol. 4, no. 36, pp. 1924–1934, 2009.
- [8] Widya Gema Bestari, Mutiara Mendopa, and Rosdanelli Hasibuan, “Karakteristik Briket Dari Sekam Padi Dan Ketaman Kayu Berperekat Daun Jambu Mete,” J. Tek. Kim. USU, vol. 5, no. 2, pp. 15–20, 2016, doi: 10.32734/jtk.v5i2.1529.
- [9] L. K. Mangalla et al., “Experimental Study on the Performance Characteristics of a Microwave - Solar Heating Dryer,” IOP Conf. Ser. Mater. Sci. Eng., vol. 797, no. 1, 2020, doi: 10.1088/1757-899X/797/1/012017.
- [10] E. A. Arinze, S. Sokhansanj, G. J. Schoenau, and F. G. Trauttmansdorff, “Experimental evaluation, simulation and optimization of a commercial heated-air batch hay drier: Part 1, drier functional performance, product quality, and economic analysis of drying,” J. Agric. Eng. Res., vol. 63, no. 4, pp. 301–314, 1996, doi: 10.1006/jaer.1996.0033.
- [11] A. Wijaya, H. Chrysolite, M. Ge, C. K. Wibowo, and A. Pradana, “Executive Summary,” World Resour. Inst., no. September, 2017, [Online]. Available: https://wri-indonesia.org/sites/default/files/WRI Layout Paper OCN v7.pdf
- [12] N. B. Klinghoffer and M. J. Castaldi, Gasification and pyrolysis of municipal solid waste (MSW). 2013. doi: 10.1533/9780857096364.2.146.
- [13] M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “More efficient biomass gasification via torrefaction,” Energy, vol. 31, no. 15, pp. 3458–3470, 2006, doi: 10.1016/j.energy.2006.03.008.
- [14] T. G. Bridgeman, J. M. Jones, I. Shield, and P. T. Williams, “Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties,” Fuel, vol. 87, no. 6, pp. 844–856, 2008, doi: 10.1016/j.fuel.2007.05.041.
- [15] A. K. Rajvanshi, “Biomass gasification in: Alternative Energy in Agriculture,” Altern. Energy Agric., vol. 2, no. 4, pp. 83–102, 1986.
- [16] H. El Hage, A. Herez, M. Ramadan, H. Bazzi, and M. Khaled, “An investigation on solar drying: A review with economic and environmental assessment,” Energy, vol. 157, pp. 815–829, 2018, doi: 10.1016/j.energy.2018.05.197.
- [17] P. Pankaew, O. Aumporn, S. Janjai, S. Pattarapanitchai, M. Sangsan, and B. K. Bala, “Performance of a large-scale greenhouse solar dryer integrated with phase change material thermal storage system for drying of chili,” Int. J. Green Energy, vol. 17, no. 11, pp. 632–643, 2020, doi: 10.1080/15435075.2020.1779074.
- [18] D. Jain and P. Tewari, “Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage,” Renew. Energy, vol. 80, pp. 244–250, 2015, doi: 10.1016/j.renene.2015.02.012.
- [19] S. M. Shalaby and M. A. Bek, “Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium,” Energy Convers. Manag., vol. 83, pp. 1–8, 2014, doi: 10.1016/j.enconman.2014.03.043.
- [20] R. B, A. P. I, and M. E, “Traditional Drying Techniques for Fruits and Vegetables Losses Alleviation in Sub-Saharan Africa,” IOSR J. Environ. Sci. Toxicol. Food Technol., vol. 8, no. 9, pp. 52–56, 2014, doi: 10.9790/2402-08945256.
- [21] K. R. Arun, G. Kunal, M. Srinivas, C. S. S. Kumar, M. Mohanraj, and S. Jayaraj, “Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage,” Energy, vol. 192, 2020, doi: 10.1016/j.energy.2019.116697.
- [22] R. Zachariah, T. Maatallah, and A. Modi, “Environmental and economic analysis of a photovoltaic assisted mixed mode solar dryer with thermal energy storage and exhaust air recirculation,” Int. J. Energy Res., vol. 45, no. 2, pp. 1879–1891, 2021, doi: 10.1002/er.5868.
PDF:
https://jurnal.harianregional.com/jem/full-95288
Published
2023-06-21
How To Cite
MANGALLA, Lukas Kano; LOLOK, Agustinus; PASOLON, Yulius Barra. Integrasi Teknologi Pengering Surya dan Tungku Gasifikasi Biomassa Untuk Peningkatan Kualitas Beras.Jurnal Energi Dan Manufaktur, [S.l.], v. 6, n. 01, p. 29-34, june 2023. ISSN 2541-5328. Available at: https://jurnal.harianregional.com/jem/id-95288. Date accessed: 08 Jul. 2024. doi:https://doi.org/10.24843/JEM.2023.v16.i01.p06.
Citation Format
ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian
Issue
Vol 6 No 01 (2023): April 2023
Section
Articles
Copyright
This work is licensed under a Creative Commons Attribution 4.0 International License
Discussion and feedback