Authors:

M. Celcilia, I. Syahbanu, A. B. Aritonang

Abstract:

“Komposit polipirol/karbon aktif tempurung kelapa (PPy/KA) telah berhasil disintesis dengan menggunakan metode polimerisasi in-situ. Penelitian ini bertujuan untuk mengetahui pengaruh lamanya waktu polimerisasi terhadap konduktivitas dan kapasitansi dari komposit PPy/KA. Tempurung kelapa dikarbonisasi pada suhu 250oC selama 2 jam dan diaktivasi dengan KOH 50%. Waktu polimerisasi yang digunakan pada sintesis PPy/KA yaitu 2 jam, 4 jam, 6 jam, dan 24 jam. Hasil karakterisasi menunjukkan karbon aktif tempurung kelapa yang diperoleh memenuhi syarat SNI 06-3730-1995. Hasil karakterisasi dari FTIR menunjukkan terjadi pergeseran serapan vibrasi ulur N-H pada 3433,29 cm-1, vibrasi ulur C=C pada 1558,48 cm-1 dan C-H out of plane pada 933,55 cm-1 pada PPy, menjadi 3448,72 cm-1; 1566,48 cm-1 dan 925,83 cm-1 pada komposit PPy/KA. Pergeseran serapan ini menunjukkan adanya interaksi antara PPy dengan karbon aktif. Dari data hasil pengukuran dengan LCR-meter dan multimeter menunjukkan bahwa nilai kapasitansi dan konduktivitas terbaik diperoleh pada komposit PPy/KA variasi 4 jam yaitu nilai tegangan sebesar 0,535 V, nilai kapasitansi sebesar 59,17 dengan waktu pengisian selama 200 detik dan waktu pelepasan selama 1994 detik. Kata Kunci: karbon aktif, komposit PPy/KA, polipirol, waktu polimerisasi. Composite of polypyrrole/ coconut shell activated carbon (PPy/ KA) has been successfully synthesized by in-situ polymerization method. The aim of this research was to determine the effect of polymerization time on the conductivity and capacitance of PPy / KA composites. The coconut shell was carbonized at 250oC for 2 hours and activated with 50% KOH. The polymerization time for PPy/KA synthesis was 2 hours, 4 hours, 6 hours, and 24 hours. The characterization results of the coconut shell activated carbon have met the national standard of SNI 06-3730-1995. The results from FTIR characterization showed that there was a shift in the absorption vibration of N-H stretching at 3433,29 cm-1, C=C stretching at 1558,48 cm-1 and C-H out of plane at 933,55 cm-1 for PPy, shifted to 3448,72 cm-1; 1566,48 cm-1 and 925,83 cm-1 for PPy/KA composite. This indicated that there were interaction between KA and PPy. From the data measurement using LCR-meter and multimeter showed that the best capacitance and conductivity values ??were obtained in the 4-hour variation PPy / KA composites. Voltage and capacitance measurement showed 0.535 V and 59.17 ?F, respectively, with a charging time of 200 seconds and discharging time of 1994 seconds. Keywords: activated carbon, polymerization time, polypyrrole, PPy/KA composite.”

Keywords

karbon aktif, komposit PPy/KA, polipirol, waktu polimerisasi. Composite of polypyrrole/ coconut shell activated carbon (PPy/ KA) has been successfully synthesized by in-situ polymerization method. The aim of this research was to determine the effect of polymerization time on the conductivity and capacitance of PPy / KA composites. The coconut shell was carbonized at 250oC for 2 hours and activated with 50% KOH. The polymerization time for PPy/KA synthesis was 2 hours, 4 hours, 6 hours, and 24 hours. The characterization results of the coconut shell activated carbon have met the national standard of SNI 06-3730-1995. The results from FTIR characterization showed that there was a shift in the absorption vibration of N-H stretching at 3433, 29 cm-1, C=C stretching at 1558, 48 cm-1 and C-H out of plane at 933, 55 cm-1 for PPy, shifted to 3448, 72 cm-1; 1566, 48 cm-1 and 925, 83 cm-1 for PPy/KA composite. This indicated that there were interaction between KA and PPy. From the data measurement using LCR-meter and multimeter showed that the best capacitance and conductivity values ??were obtained in the 4-hour variation PPy / KA composites. Voltage and capacitance measurement showed 0.535 V and 59.17 ?F, respectively, with a charging time of 200 seconds and discharging time of 1994 seconds. Keywords: activated carbon, polymerization time, polypyrrole, PPy/KA composite.

Downloads:

Download data is not yet available.

References

  • Ahmad, Z., Chuodary, M. A., Mehmood, A., Wakeel, R., Akhtar, T., Rafiq, M. A. 2016. Synthesis of Polypyrrole Nano/Microspheres Using Cobalt(III) as an Oxidizing Agent and Its Ammonia Sensing Behavior. Macromol. Res. 24 (7): 596-601.
  • Balli, B., Şavk, A., dan Şen, F. 2019. Graphene and polymer composites for supercapacitor applications. Nanocarbon and Its Composite: Preparation, Properties and Applications. Woodhead Publishing Series in Composites Science and Engineering. 123-151.
  • Chitte, H. K., Bhat, N. V., Walunj, V. E., dan Shinde, G.N. 2011. Synthesis of Polypyrrole Using Ferric Chloride (FeCl3) as Oxidant Together with Some Dopants for Use in Gas Sensors. Journal of Sensor Technology. 1: 47-56.
  • Chougule, M. A., Pawar, S. G., Godse, P. R., Mulik, R .N., Sen, S., dan Patil, V. B. 2011. Synthesis and Characterization of Polypyrrole (PPy) Thin Films. Soft Nanoscience Letters. 1: 6-10.
  • Erlina, Umiatin, dan Budi, E. 2015. Pengaruh Konsetrasi Larutan KOH Pada Karbon Aktif Tempurung Kelapa Untuk Adsorpsi Cu. Prosiding Seminar Nasional Fisika. 4: VII-55 – VII-60.
  • Huang,Y., Hong, F. L., Wang, Z. F., Zhu, M. S., Pei, Z. X., Xue, Q., Huang, Y., dan Zhi, C.Y. 2016. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 22: 422-438.
  • Kujundziski, A. P., Chamovcska, D., dan Grchev, T. 2014. Capacitive Properties of Polypyrrole/Activated Carbon Composite. Hemijska Industrija. 68(6): 709-719.
  • Le, T. H., Kim, Y. K., dan Yoon, H. S. 2017. Electrical and Electrochemical Properties of Conducting Polymers. Polymers. 9(4): 150.
  • Li, S., Qian, K. K., wang, S., Liang K. Q., dan Yan, W. 2017. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Cahracterization and Adsorption Capability. Int. J. Environ. Res. Public Health. 14: 113.
  • Liu, Y., Wang, H. H., Zhou, J., Bian, L. Y., Zhu, E.W., dan Hai, J.F. 2013. Graphene/polypyrrole Intercalating Nanocomposites as Supercapacitros Electrode. Electrochimica Acta. 112: 44-52.
  • Nurdiati, D. 2015. Sintesis Komposit PANI/Karbon Dari Tempurung Kemiri (Aleurites moluccana) Sebagai Elektroda Kapasitor. Jurnal Fisika Unand. 4(1): 51-57.
  • Prasetyo, A., Yudi, A., dan Astuti, N. 2011. Adsorpsi Metiloen Blue Pada Karbon Aktif Dari Ban Bekas Dengan Variasi Konsentrasi NaCl Pada Suhu Pengaktifan 600oC dan 650 oC. Journal Neutrino. 4 (1): 16-23.
  • Porciúncula, C. B., Marcilio, N. R., Tessaro, I. C., dan Gerchmann, M. 2012. Production of Hydrogen in the Reaction Between Aluminum and Water in the Presence of NaOH and KOH. Braz. J. Chem. Eng. 29 (2): 337 – 348.
  • Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Conil, M.P., dan Belgaceum, N. 2011. Polypyrrole and Polypyrrole/Wood-Derived Material Conducting Composite. BioResources. 6(3): 3585-3620.
  • Saville, P. 2005. Polypyrrole Formation and Use. Defence R&D Canada. Atlantic.
  • Setyoningrum, T. M., Setiawan, A., dan Pamungkas, G. 2018. Pembuatan Karbon Aktif dari Hasil Pirolisis Ban Bekas. Eksergi. 15 (2): 54-58.
  • Sun, H., Cannon, F. S., He, X. 2019.Polypyrrole-Tailored Activated Carbon for Trifluoroacetate Removal from Groundwater. Environ. Eng. Sci. 36 (11): 0453.
  • Taer, E., Mustika, W. S., Agustino, Fajarini, Hidayu, N., Taslim, R. 2017. The Felxible Carbon Activated Electrodes Made From Coconut Shell Waste for Supercapacitor Application. IOP Conf. Ser.: Earth Environ. Sci. 58: 012065
  • Thakur, A. K., Choudary, R. B., Majumder, M., Gupta, G. 2017. In-Situ Integration of Waste Coconut Shell Derived Activated Carbon/ Polypyrrole/Rare Earth Metal Oxide (Eu2O3): A Novel Step Towards Ultrahigh Volumetric Capacitance. Electrochimica Acta. 251: 532-545.
  • Turangan, T. M. B., Tiwow, V. A., dan Simandjuntak, S. 2017. Coconut Shellwaste Pyrolysis Potency as a Carbon Material From Minahasa Charcoal, Indonesia. Int. J. of Appl. Chem. 13(3): 721-731.
  • Wan, M. X. 2009. Conducting Polymer with Micro or Nanometer Structure. Tshinghua University Press. Beijing.
  • Wang, J. P., Li, X., Du, X. F., Wang, J., Ma, H.R., dan Jing. X. L. 2017. Polypyrrole Composite with Carbon Material for Supercapacitor. Chemical Papers. 71: 293–316.
  • Yuliusman. 2016. Pembuatan Karbon Aktif Dari Tempurung Kelapa Melalui Proses Aktivasi Kimia Dengan KOH dan Fisika Dengan CO2. Prosiding Seminar Nasional Teknik Kimia Soebardjo Brotohardjono. 12: B.1-1 – B.1-6.

PDF:

https://jurnal.harianregional.com/jchem/full-63766

Published

2021-07-31

How To Cite

CELCILIA, M.; SYAHBANU, I.; ARITONANG, A. B.. PENGARUH WAKTU POLIMERISASI TERHADAP KARAKTERISTIK KOMPOSIT POLIPIROL/KARBON AKTIF (PPy/KA) DARI TEMPURUNG KELAPA SEBAGAI ELEKTRODA SUPERKAPASITOR.Jurnal Kimia (Journal of Chemistry), [S.l.], p. 237-243, july 2021. ISSN 2599-2740. Available at: https://jurnal.harianregional.com/jchem/id-63766. Date accessed: 28 Aug. 2025. doi:https://doi.org/10.24843/JCHEM.2021.v15.i02.p16.

Citation Format

ABNT, APA, BibTeX, CBE, EndNote - EndNote format (Macintosh & Windows), MLA, ProCite - RIS format (Macintosh & Windows), RefWorks, Reference Manager - RIS format (Windows only), Turabian

Issue

Vol. 15, No.2, Juli 2021

Section

Articles

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License