Perhitungan Nilai Besaran Fisis Mammografi Jenis Histopatologi IDC dan ILC
on
JNATIA Volume 1, Nomor 3, Mei 2023
Jurnal Nasional Teknologi Informasi dan Aplikasinya
p-ISSN: 2986-3929
Perhitungan Nilai Besaran Fisis Mammografi Jenis Histopatologi IDC dan ILC
Anak Agung Ngurah Frady Cakranegaraa1, Ida Ayu Gde Suwiprabayanti Putra a2
aProgram Studi Informatika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana
Jalan Raya Kampus Udayana, Bukit Jimbaran, Kuta Selatan, Badung, Bali Indonesia 1[email protected] 2[email protected]
Abstract
In this study, the main objective was to calculate the range of physical values contained in mammography X-ray images and determine the physical quantities that are significant in differentiating between the histopathological types of ILC (Invasive Lobular Carcinoma) and IDC (Invasive Ductal Carcinoma). The research method involved collecting data from 152 mammograms consisting of 7 ILCs and 145 IDCs from doctor Sutomo Surabaya's radiology database. The range of physical values such as entropy, contrast, second angular moment, differential invest moment, mean, deviation, entropy of Hdiff, angular moment of Hdiff, and mean of Hdiff are calculated and compared between ILC and IDC using the Anova statistical test. The results showed that there were differences in the range of physical quantity values between ILC and IDC. Significant parameters in differentiating the two types of histopathology are mean1, mean2, mean3, and mean4. In conclusion, IDC has a higher peak than ILC, and the range of ILC physical quantities is higher than IDC.
Keywords: X-ray, IDC, ILC, Mammografi, Anova
Kanker payudara merupakan penyebab kematian terbanyak setelah kanker rahim, banyak penelitian yang dilakukan untuk mendeteksi dini kanker payudara, seperti : texture coding [1] , edge detection [2] ,adaptive k-mean clustering [3] , self similar fractal [4], fractal feature [5], neural network [6], kekre’s [7], SVM classifier [8], texture resemblance marker [9], extraction [10], accurate method (M. Rizzi,at.al.,2010), contour description [11], bilatral asymmetry S. K. Bandyopadhyay (2010), orthogonal polynomials model [12], dual tree complex [13], gabor features [14], fuzzy clustering [15], k-means and fuzzy c-means (N. Singh,at.al.,2011), vector quantization techique (H.B. Kekre,at.al.,2009), kohonen network SOM and LVQ [16], T sallis entropy & a type II fuzzy (Mohanalin.at.al.,2010), foveal method (Oh Whi-Vin,at.al,2009), wavelet [17]. Belum ada yang menggunakan besaran fisis untuk mengkalsifikasi histopatologi kanker payudara. Pada penelitian ini bertujuan untuk menghitung range nilai besaran fisis yang terdapat pada hasil poto sinar-X mammografi dan menentukan besaran fisis apa saja yang benar-benar signifikan mampu membedakan ILC dan IDC. Pada makalah ini diorganisasi sebagai berikut. Bagian 2 bahan dan metoda, bagian 3 hasil, Bagian 4 pembahasan dan kesimpulan dibahas pada bagian 5.
Metode penelitian adalah suatu langkah ilmiah yang digunakan untuk memecahkan suatu masalah guna mencapai tujuan tertentu. Penelitian ini bertujuan untuk membangun sebuah ontologi yang dapat menjadi basis komputerisasi di bidang perfilman untuk pengembangan sistem rekomendasi pemilihan film. Dalam membangun sebuah ontologi, diperlukan sebuah metode yang disebut Methontology. Methontology adalah salah satu yang memberikan keuntungan dalam kegiatan konseptualisasi rinci pada setiap tahap dan juga memiliki
kemampuan untuk mengatur ulang ontologi. Langkah-langkah metodenya adalah Spesifikasi, akuisisi, konsep, integrasi, implementasi, evaluasi, dokumentasi
-
a. Mammogram
Pertama-tama kami mengambil data record pasien dari ruang radiologi yang sudah pasti nilai histopatologinya dan sudah diperiksa oleh dokter ahli onkologi yang sudah berpengalaman lebih dari 20 tahun. Setelah mendapatkan data record pasien Kemudian kami lanjut mengambil gambar mammogram dari data base ruang radiologi sesuai data record pasien. Tidak semua data record pasien ada gambar mamogramnya, karena tidak semua pasien melakukan pemeriksaan mammografi dirumah sakit tersebut. Data mammogram merupakan data sekunder yang diambil dari data base rumah sakit Dokter Soetomo Surabaya mulai bulan Januari 2023 sampai Mei 2023, mammogram yang memenuhi kriteria inklusi berikut dimasukkan dalam penelitian ini. 1) mammogram dengan lesi payudara yang mencurigakan terdeteksi dan data recordnya ada di ruang onkologi. 2) Pasien tidak menjalani biopsi, kemoterapi atau intervensi lainnya sebelum pemeriksaan. 3) Diameter lesi payudara adalah lebih besar dari 1cm. 4) Karakteristik lesi adalah dikonfirmasi oleh patologi. Dari 200 data hanya 152 data memenuhi kriteria inklusi. 152 mammogram yang terdiri dari 7 ILC dan 145 IDC.
-
b. Akuisisi Gambar
Gambar mammogram diambil dari alat mammografi merek Kodak tipe dryview 6800 laser imager dengan seting KV= 30, MAS = 25, brightness = 7, latitude = 11, contras = -4, ukuran film = 18x24 cm.
-
c. Analisis Gambar
Seorang dokter ahli radiologi dengan pengalaman lebih dari 20 tahun dalam diagnosis lesi payudara, menganalisis gambar mammogram. ROI dipilih di area lesi yang paling jelas dengan ukuran 2 x 2 cm. kemudian dilakukan perbaikan kontras mammogram. Parameter fisika yang ada pada mammogram dihitung secara otomatis menggunakan persamaan (1 s/d 10) [18].
Entropy = - ∑ytq=yι∑yr=yι[H(yq,yr,d)]log [H(yq,yr,d)](1)
Contrast = ∑yrq=y1 ∑ytr=yι(yq — yr)2 H(yq,yr, d)(2)
Moment Angulerkedua= ∑yrq=y∑yr=yγ[H(yq,yr,d)]2(3)
Momen DIfferensIcd Invers = ∑yr-y ∑ytr=y1 [^^2]
yq yr
Deviation = √∑yrq=yι[yq - ∑yrp=yιypHm(yp,d)]2Hm(yq,d)(6)
Hdiff(i,d) = ∑y=y—,r=:i∑yr=:ylH(yq>yr>d)
EntropydariHdiff= -∑=hHdiff(i,d)∖ogHdiff(ild)(8)
ASM dari Hdiff(i,d) =∑i=iJHdiff(i,d^(9)
dengan yq, yr, y1, yt, d berturut-turut adalah nilai gray-level pixel kesatu, nilai gray-level pixel kedua, nilai awal nol, nilai akhir 255, jarak antar dua pixel. Hasil perhitungan tersebut kemudian ditabulasi menggunakan exel, nilai entropy ILC dan ILC dikumpulkan jadi satu file, begitu juga sepuluh parameter fisika yang lain. Kemudian dilakukan Analisa statistic Anova table 1. Kami juga membuat visual pemisahan background dengan objeck massa yang mencurigakan seperti terlihat pada gambar 1. Kami akan melihat apakah ada perbedaan visual ILC dan IDC.
Pada penelitian ini kami menggunakan 3 jenis data, yaitu data asli (tidak ditransformasi), data ditransformasi biner yang nilainya dari 0 sampai 1, data ditransformasi bipolar yang nilainya dari -1 sampai 1. Persamaan untuk normalisasi data sebagai berikut:
Data Biner = 0.8 * (X – Min) / (Max – Min) + 0.1
(11)
Data Bipolar = 0.8*(X – Min) / (Max – Min) + 0.1 + (X – Min) / (Max –Min) –1 (12)
Dimana:
X = nilai intensitas piksel data asli
Min = nilai minimum dari keseluruhan data
Max = nilai maxsimum dari keseluruhan data.
Setelah parameter fisis dihitung menggunakan persamaan (1) sampai (10), kemudian hasil perhitungan parameter fisis tersebut ditransformasi ke Biner dan Bipolar menggunakan persamaan (11) dan (12), kemudian dianalisa statistik menggunakan Uji Anova untuk mencari parameter fisika yang benar-benar mampu membedakan ILC dan IDC seperti terlihat pada table 1.
Table 1. Hasil Uji Statistik Anova.
No |
Parameter |
Jenis |
Transformasi | |||||||||||
Tidak |
Biner |
Bipolar | ||||||||||||
Mean |
Median |
Variance |
P |
Mean |
Median Variance |
P |
Mean |
Median |
Variance |
P | ||||
1 |
Entr1 |
ILC |
3.6171657 |
3.64827 |
0.007 |
0.907 |
0.5708492 |
0.6911345 |
0.097 |
0.371 |
0.1594107 |
0.4300527 |
0.493 |
0.371 |
IDC |
3.6104536 |
3.64668 |
0.023 |
0.6286715 |
0.6665395 |
0.025 |
0.2895109 |
0.3747138 |
0.126 | |||||
2 |
Entr2 |
ILC |
3.66175 |
3.68861 |
0.006 |
0.933 |
0.5482805 |
0.6453839 |
0.083 |
0.25 |
0.1086312 |
0.3271137 |
0.419 |
0.25 |
IDC |
3.6568468 |
3.69217 |
0.024 |
0.6235608 |
0.6607593 |
0.026 |
0.2780117 |
0.3617084 |
0.132 | |||||
3 |
Entr3 |
ILC |
3.6813429 |
3.70126 |
0.006 |
0.952 |
0.5414698 |
0.6118671 |
0.078 |
0.2 |
0.0933072 |
0.251701 |
0.393 |
0.2 |
IDC |
3.6777772 |
3.71409 |
0.024 |
0.6268765 |
0.6657443 |
0.027 |
0.285472 |
0.3729247 |
0.138 | |||||
4 |
Entr4 |
ILC |
3.6888114 |
3.70141 |
0.006 |
0.996 |
0.5509051 |
0.5961444 |
0.08 |
0.208 |
0.1145364 |
0.2163248 |
0.405 |
0.208 |
IDC |
3.688545 |
3.72287 |
0.024 |
0.6350653 |
0.6718775 |
0.027 |
0.303897 |
0.3867243 |
0.139 | |||||
5 |
Entr5 |
ILC |
3.6952657 |
3.7031 |
0.006 |
0.993 |
0.5537913 |
0.5818096 |
0.08 |
0.19 |
0.1210304 |
0.1840717 |
0.405 |
0.19 |
IDC |
3.6947606 |
3.73059 |
0.024 |
0.6412804 |
0.6798595 |
0.027 |
0.3178809 |
0.4046838 |
0.138 | |||||
6 |
Entr6 |
ILC |
3.6998771 |
3.7003 |
0.006 |
0.934 |
0.5662492 |
0.5678019 |
0.082 |
0.236 |
0.1490607 |
0.1525543 |
0.415 |
0.236 |
IDC |
3.6949498 |
3.73294 |
0.024 |
0.6469026 |
0.6881325 |
0.028 |
0.3305309 |
0.4232982 |
0.144 | |||||
7 |
Entr7 |
ILC |
3.70003 |
3.69464 |
0.006 |
0.975 |
0.5633577 |
0.5432991 |
0.084 |
0.183 |
0.1425548 |
0.0974229 |
0.423 |
0.183 |
IDC |
3.6982033 |
3.7345 |
0.023 |
0.6532126 |
0.6931435 |
0.028 |
0.3447283 |
0.4345728 |
0.141 | |||||
8 |
Entr8 |
ILC |
3.6977043 |
3.69274 |
0.006 |
0.984 |
0.5791215 |
0.5601367 |
0.089 |
0.237 |
0.1780234 |
0.1353076 |
0.449 |
0.237 |
IDC |
3.6965695 |
3.73426 |
0.023 |
0.659688 |
0.7017668 |
0.028 |
0.3592979 |
0.4539752 |
0.143 | |||||
9 |
Entr9 |
ILC |
3.6966014 |
3.69013 |
0.006 |
0.966 |
0.5845788 |
0.5584301 |
0.091 |
0.236 |
0.1903023 |
0.1314678 |
0.46 |
0.236 |
IDC |
3.6941683 |
3.73761 |
0.022 |
0.6648231 |
0.7134101 |
0.028 |
0.370852 |
0.4801728 |
0.141 | |||||
10 |
Entr10 |
ILC |
3.6916357 |
3.67994 |
0.005 |
0.99 |
0.5818965 |
0.5334369 |
0.092 |
0.237 |
0.1842671 |
0.0752331 |
0.468 |
0.237 |
IDC |
3.6909294 |
3.73155 |
0.022 |
0.6617628 |
0.7073611 |
0.028 |
0.3639663 |
0.4665624 |
0.14 | |||||
11 |
Contr1 |
ILC |
339.7269071 |
255.32723 |
63250.793 |
0.726 |
0.3092668 |
0.2156745 |
0.078 |
0.802 |
-0.4291498 |
-0.6397325 |
0.394 |
0.802 |
IDC |
315.1388486 |
270.21934 |
31577.801 |
0.2939475 |
0.2559134 |
0.023 |
-0.4636182 |
-0.5491949 |
0.115 | |||||
12 |
Contr2 |
ILC |
552.7721929 |
372.36493 |
230311.26 |
0.656 |
0.2794663 |
0.1734096 |
0.08 |
0.754 |
-0.4962008 |
-0.7348285 |
0.403 |
0.754 |
IDC |
499.2650374 |
432.54989 |
90565.05 |
0.2984066 |
0.2655383 |
0.022 |
-0.4535852 |
-0.5275389 |
0.111 | |||||
13 |
Contr3 |
ILC |
669.0755014 |
481.0838 |
239945.235 |
0.937 |
0.2927707 |
0.1846806 |
0.079 |
0.93 |
-0.4662659 |
-0.7094686 |
0.402 |
0.93 |
IDC |
656.786411 |
561.12657 |
156339.435 |
0.2978604 |
0.2634479 |
0.02 |
-0.454814 |
-0.5322421 |
0.102 | |||||
14 |
Contr4 |
ILC |
779.0552014 |
584.99815 |
263056.082 |
0.904 |
0.3032494 |
0.1964216 |
0.08 |
0.967 |
-0.4426889 |
-0.6830515 |
0.404 |
0.967 |
IDC |
801.8035399 |
667.95765 |
234557.678 |
0.3008317 |
0.2616762 |
0.02 |
-0.4481287 |
-0.5362285 |
0.102 | |||||
15 |
Contr5 |
ILC |
885.5693447 |
678.8664 |
306194.868 |
0.813 |
0.3064978 |
0.200431 |
0.081 |
0.971 |
-0.43538 |
-0.6740302 |
0.408 |
0.971 |
IDC |
937.9186496 |
815.83116 |
326088.927 |
0.3043569 |
0.2736968 |
0.021 |
-0.440197 |
-0.5091822 |
0.104 | |||||
16 |
Contr6 |
ILC |
988.7686614 |
766.3858 |
359973.502 |
0.766 |
0.3098753 |
0.2041325 |
0.081 |
0.981 |
-0.4277807 |
-0.6657018 |
0.412 |
0.981 |
No |
Parameter |
Jenis |
Transformasi | |||||||||||
Tidak |
Biner |
Bipolar | ||||||||||||
Mean |
Median |
Variance |
P |
Mean |
Median Variance |
P |
Mean |
Median |
Variance |
P | ||||
IDC |
1063.787706 |
961.40023 |
426712.144 |
0.308433 |
0.2854336 |
0.022 |
-0.4310258 |
-0.4827745 |
0.109 | |||||
17 |
Contr7 |
ILC |
1085.713991 |
846.3231 |
421618.401 |
0.735 |
0.3161202 |
0.2112354 |
0.081 |
0.942 |
-0.4137296 |
-0.6497204 |
0.41 |
0.942 |
IDC |
1181.332629 |
1064.5711 |
536751.225 |
0.3116883 |
0.2878312 |
0.022 |
-0.4237013 |
-0.4773799 |
0.113 | |||||
18 |
Contr8 |
ILC |
1177.54542 |
921.82893 |
491736.133 |
0.716 |
0.3185887 |
0.21491 |
0.081 |
0.973 |
-0.4081754 |
-0.6414525 |
0.409 |
0.973 |
IDC |
1291.041461 |
1136.0205 |
655841.581 |
0.3164446 |
0.2869085 |
0.024 |
-0.4129996 |
-0.4794559 |
0.121 | |||||
19 |
Contr9 |
ILC |
1264.636741 |
975.03648 |
575368.733 |
0.701 |
0.3181831 |
0.2099167 |
0.08 |
0.936 |
-0.4090881 |
-0.6526875 |
0.407 |
0.936 |
IDC |
1396.368226 |
1192.9588 |
791109.975 |
0.3233547 |
0.286617 |
0.026 |
-0.397452 |
-0.4801117 |
0.131 | |||||
20 |
Contr10 |
ILC |
1347.970017 |
1030.62 |
661883.395 |
0.694 |
0.315536 |
0.2048991 |
0.08 |
0.797 |
-0.4150439 |
-0.663977 |
0.407 |
0.797 |
IDC |
1494.52159 |
1314.6146 |
934871.354 |
0.333018 |
0.3015538 |
0.029 |
-0.3757095 |
-0.4465039 |
0.145 | |||||
21 |
MA1 |
ILC |
0.0003714 |
0.0003 |
0 |
0.711 |
0.3145773 |
0.1979592 |
0.078 |
0.878 |
-0.4172012 |
-0.6795918 |
0.395 |
0.878 |
IDC |
0.0003488 |
0.0003 |
0 |
0.3041379 |
0.2513514 |
0.029 |
-0.4406897 |
-0.5594595 |
0.146 | |||||
22 |
MA2 |
ILC |
0.0002857 |
0.00027 |
0 |
0.823 |
0.4785714 |
0.4 |
0.078 |
0 |
-0.0482143 |
-0.225 |
0.396 |
0 |
IDC |
0.0002964 |
0.00026 |
0 |
0.2737931 |
0.2333333 |
0.019 |
-0.5089655 |
-0.6 |
0.098 | |||||
23 |
MA3 |
ILC |
0.0002714 |
0.00026 |
0 |
0.843 |
0.4809524 |
0.42 |
0.075 |
0 |
-0.0428571 |
-0.18 |
0.381 |
0 |
IDC |
0.0002806 |
0.00025 |
0 |
0.2697135 |
0.2352113 |
0.019 |
-0.5181447 |
-0.5957746 |
0.096 | |||||
24 |
MA4 |
ILC |
0.0002643 |
0.00026 |
0 |
0.857 |
0.4961905 |
0.4733333 |
0.073 |
0 |
-0.0085714 |
-0.06 |
0.369 |
0 |
IDC |
0.0002726 |
0.00024 |
0 |
0.2629163 |
0.2257143 |
0.019 |
-0.5334384 |
-0.6171429 |
0.096 | |||||
25 |
MA5 |
ILC |
0.0002614 |
0.00025 |
0 |
0.897 |
0.4809524 |
0.42 |
0.075 |
0 |
-0.0428571 |
-0.18 |
0.381 |
0 |
IDC |
0.0002673 |
0.00023 |
0 |
0.2592004 |
0.215942 |
0.019 |
-0.5417991 |
-0.6391304 |
0.097 | |||||
26 |
MA6 |
ILC |
0.0002571 |
0.00025 |
0 |
0.883 |
0.4836735 |
0.4428571 |
0.075 |
0 |
-0.0367347 |
-0.1285714 |
0.379 |
0 |
IDC |
0.0002639 |
0.00023 |
0 |
0.2529852 |
0.2142857 |
0.019 |
-0.5557833 |
-0.6428571 |
0.095 | |||||
27 |
MA7 |
ILC |
0.0002571 |
0.00025 |
0 |
0.909 |
0.4836735 |
0.4428571 |
0.075 |
0 |
-0.0367347 |
-0.1285714 |
0.379 |
0 |
IDC |
0.0002623 |
0.00023 |
0 |
0.2533633 |
0.215942 |
0.019 |
-0.5549325 |
-0.6391304 |
0.094 | |||||
28 |
MA8 |
ILC |
0.0002571 |
0.00025 |
0 |
0.921 |
0.4836735 |
0.4428571 |
0.075 |
0 |
-0.0367347 |
-0.1285714 |
0.379 |
0 |
IDC |
0.0002616 |
0.00022 |
0 |
0.2525637 |
0.2043478 |
0.018 |
-0.5567316 |
-0.6652174 |
0.094 | |||||
29 |
MA9 |
ILC |
0.0002571 |
0.00026 |
0 |
0.916 |
0.4809524 |
0.5 |
0.078 |
0 |
-0.0428571 |
0 |
0.395 |
0 |
IDC |
0.0002619 |
0.00022 |
0 |
0.2412894 |
0.1927536 |
0.018 |
-0.582099 |
-0.6913043 |
0.094 | |||||
30 |
MA10 |
ILC |
0.0002571 |
0.00026 |
0 |
0.897 |
0.4765808 |
0.4934426 |
0.077 |
0 |
-0.0526932 |
-0.0147541 |
0.392 |
0 |
IDC |
0.0002629 |
0.00022 |
0 |
0.2424888 |
0.1927536 |
0.018 |
-0.5794003 |
-0.6913043 |
0.093 | |||||
31 |
MD1 |
ILC |
0.05204 |
0.05033 |
0 |
0.584 |
0.5125805 |
0.4607427 |
0.071 |
0.183 |
0.0283062 |
-0.0883289 |
0.359 |
0.183 |
IDC |
0.0547979 |
0.0533 |
0 |
0.4198662 |
0.3999668 |
0.03 |
-0.180301 |
-0.2250747 |
0.154 | |||||
32 |
MD2 |
ILC |
0.0437914 |
0.04272 |
0 |
0.762 |
0.4835906 |
0.4324179 |
0.084 |
0 |
-0.0369211 |
-0.1520597 |
0.424 |
0 |
IDC |
0.0473543 |
0.04361 |
0.001 |
0.1533875 |
0.1452761 |
0.005 |
-0.7798781 |
-0.7981288 |
0.023 | |||||
33 |
MD3 |
ILC |
0.0385729 |
0.03673 |
0 |
0.703 |
0.4624763 |
0.3595953 |
0.104 |
0.25 |
-0.0844283 |
-0.3159107 |
0.526 |
0.25 |
IDC |
0.0401514 |
0.03764 |
0 |
0.3918904 |
0.3577974 |
0.022 |
-0.2432465 |
-0.3199559 |
0.11 | |||||
34 |
MD4 |
ILC |
0.0361086 |
0.03475 |
0 |
0.775 |
0.4434716 |
0.3704301 |
0.109 |
0 |
-0.1271889 |
-0.2915323 |
0.551 |
0 |
IDC |
0.0384927 |
0.03462 |
0 |
0.1697139 |
0.1574659 |
0.005 |
-0.7431437 |
-0.7707017 |
0.024 | |||||
35 |
MD5 |
ILC |
0.0340371 |
0.0324 |
0 |
0.916 |
0.4321557 |
0.3535414 |
0.09 |
0.309 |
-0.1526496 |
-0.3295318 |
0.455 |
0.309 |
IDC |
0.034449 |
0.03202 |
0 |
0.3719233 |
0.337628 |
0.021 |
-0.2881726 |
-0.3653371 |
0.104 | |||||
36 |
MD6 |
ILC |
0.03237 |
0.03115 |
0 |
0.943 |
0.4447656 |
0.3820809 |
0.094 |
0.29 |
-0.1242775 |
-0.2653179 |
0.476 |
0.29 |
IDC |
0.0326346 |
0.03018 |
0 |
0.3799932 |
0.3425905 |
0.022 |
-0.2700154 |
-0.3541714 |
0.111 | |||||
37 |
MD7 |
ILC |
0.0312786 |
0.03111 |
0 |
0.947 |
0.496917 |
0.4884567 |
0.095 |
0.06 |
-0.0069367 |
-0.0259724 |
0.482 |
0.06 |
IDC |
0.0310297 |
0.02836 |
0 |
0.3804318 |
0.3395869 |
0.022 |
-0.2690284 |
-0.3609294 |
0.112 | |||||
38 |
MD8 |
ILC |
0.0299643 |
0.02948 |
0 |
0.936 |
0.4124411 |
0.3846485 |
0.098 |
0.782 |
-0.1970076 |
-0.2595409 |
0.498 |
0.782 |
IDC |
0.0296746 |
0.02748 |
0 |
0.3949918 |
0.3592924 |
0.023 |
-0.2362685 |
-0.3165921 |
0.119 | |||||
39 |
MD9 |
ILC |
0.0289129 |
0.02829 |
0 |
0.93 |
0.4372028 |
0.3998501 |
0.1 |
0.24 |
-0.1412936 |
-0.2253373 |
0.506 |
0.24 |
IDC |
0.0285969 |
0.02629 |
0 |
0.3642408 |
0.3276887 |
0.022 |
-0.3054582 |
-0.3877005 |
0.114 | |||||
40 |
MD10 |
ILC |
0.0279657 |
0.0274 |
0 |
0.93 |
0.4552946 |
0.4208524 |
0.111 |
0.185 |
-0.1005871 |
-0.1780822 |
0.561 |
0.185 |
IDC |
0.0276533 |
0.0254 |
0 |
0.3707502 |
0.3334437 |
0.023 |
-0.2908121 |
-0.3747517 |
0.119 | |||||
41 |
Mean1 |
ILC |
154.47561 |
153.8334 |
262.192 |
0.046 |
0.508102 |
0.4985452 |
0.058 |
0.466 |
0.0182295 |
-0.0032732 |
0.294 |
0.466 |
IDC |
133.5669281 |
133.9257 |
739.701 |
0.4622325 |
0.4643164 |
0.025 |
-0.0849769 |
-0.080288 |
0.126 | |||||
42 |
Mean2 |
ILC |
154.9300529 |
153.93231 |
263.171 |
0.046 |
0.5083009 |
0.4933739 |
0.059 |
0.485 |
0.0186769 |
-0.0149087 |
0.298 |
0.485 |
IDC |
133.9853676 |
133.80107 |
743.532 |
0.4642531 |
0.4631839 |
0.025 |
-0.0804305 |
-0.0828363 |
0.127 | |||||
43 |
Mean3 |
ILC |
155.2295157 |
153.97526 |
262.773 |
0.047 |
0.5063483 |
0.4874891 |
0.059 |
0.522 |
0.0142836 |
-0.0281495 |
0.301 |
0.522 |
IDC |
134.3513773 |
133.63431 |
746.547 |
0.4660025 |
0.4618476 |
0.025 |
-0.0764943 |
-0.0858429 |
0.127 | |||||
44 |
Mean4 |
ILC |
155.4813714 |
154.00345 |
261.535 |
0.049 |
0.5043486 |
0.4819574 |
0.06 |
0.563 |
0.0097843 |
-0.0405958 |
0.304 |
0.563 |
IDC |
134.6905923 |
133.556 |
749.536 |
0.4677783 |
0.4612096 |
0.025 |
-0.0724989 |
-0.0872784 |
0.127 | |||||
45 |
Mean5 |
ILC |
155.6828743 |
153.92164 |
259.71 |
0.05 |
0.502263 |
0.4753364 |
0.061 |
0.603 |
0.0050917 |
-0.0554931 |
0.307 |
0.603 |
IDC |
135.0195647 |
133.4474 |
751.466 |
0.4693894 |
0.4602935 |
0.025 |
-0.0688738 |
-0.0893396 |
0.127 | |||||
46 |
Mean6 |
ILC |
155.85402 |
153.83057 |
258.456 |
0.052 |
0.4994036 |
0.4682075 |
0.061 |
0.65 |
-0.0013419 |
-0.0715332 |
0.311 |
0.65 |
IDC |
135.3111239 |
133.60944 |
753.521 |
0.4706914 |
0.460858 |
0.025 |
-0.0659443 |
-0.0880695 |
0.127 | |||||
47 |
Mean7 |
ILC |
156.0133371 |
153.7045 |
258.779 |
0.053 |
0.4965284 |
0.4607118 |
0.062 |
0.693 |
-0.0078111 |
-0.0883986 |
0.315 |
0.693 |
IDC |
135.566011 |
134.47293 |
755.362 |
0.4715271 |
0.4652169 |
0.025 |
-0.064064 |
-0.0782619 |
0.127 | |||||
48 |
Mean8 |
ILC |
156.1406957 |
153.65663 |
259.239 |
0.055 |
0.4942755 |
0.4554931 |
0.063 |
0.73 |
-0.0128802 |
-0.1001405 |
0.32 |
0.73 |
IDC |
135.8055795 |
135.28083 |
755.887 |
0.4724357 |
0.4694081 |
0.025 |
-0.0620196 |
-0.0688318 |
0.127 | |||||
49 |
Mean9 |
ILC |
156.2764029 |
153.58564 |
260.251 |
0.056 |
0.4915833 |
0.4493139 |
0.064 |
0.769 |
-0.0189376 |
-0.1140438 |
0.325 |
0.769 |
IDC |
136.0024805 |
136.17509 |
757.413 |
0.4729756 |
0.4739708 |
0.025 |
-0.0608049 |
-0.0585657 |
0.127 | |||||
50 |
Mean10 |
ILC |
156.4100486 |
153.4606 |
261.816 |
0.056 |
0.4897327 |
0.4431618 |
0.065 |
0.798 |
-0.0231015 |
-0.1278859 |
0.33 |
0.798 |
IDC |
136.1667878 |
136.86046 |
758.508 |
0.4735092 |
0.4775047 |
0.025 |
-0.0596043 |
-0.0506145 |
0.127 | |||||
51 |
Dev1 |
ILC |
31.2089386 |
29.62824 |
66.875 |
0.92 |
0.3774478 |
0.3264064 |
0.07 |
0.411 |
-0.2757423 |
-0.3905855 |
0.353 |
0.411 |
IDC |
31.6089927 |
31.14725 |
107.689 |
0.4341146 |
0.4264074 |
0.03 |
-0.148242 |
-0.1655834 |
0.152 | |||||
52 |
Dev2 |
ILC |
30.8363843 |
29.51147 |
64.028 |
0.877 |
0.3860399 |
0.3424812 |
0.069 |
0.501 |
-0.2564103 |
-0.3544172 |
0.35 |
0.501 |
IDC |
31.4520058 |
31.0058 |
106.687 |
0.4320443 |
0.4246257 |
0.029 |
-0.1529002 |
-0.1695921 |
0.149 | |||||
53 |
Dev3 |
ILC |
30.64752 |
29.38955 |
66.814 |
0.898 |
0.3872829 |
0.3469869 |
0.069 |
0.55 |
-0.2536134 |
-0.3442794 |
0.347 |
0.55 |
IDC |
31.1554626 |
30.86903 |
105.963 |
0.4278787 |
0.4231281 |
0.029 |
-0.1622729 |
-0.1729618 |
0.148 | |||||
54 |
Dev4 |
ILC |
30.4715129 |
29.36539 |
68.732 |
0.841 |
0.3899424 |
0.3551816 |
0.068 |
0.553 |
-0.2476295 |
-0.3258415 |
0.344 |
0.553 |
IDC |
31.2711453 |
30.69913 |
106.954 |
0.4303601 |
0.4208834 |
0.029 |
-0.1566899 |
-0.1780123 |
0.149 | |||||
55 |
Dev5 |
ILC |
30.3944043 |
29.3589 |
72.398 |
0.839 |
0.3907635 |
0.3592118 |
0.067 |
0.569 |
-0.2457821 |
-0.3167734 |
0.34 |
0.569 |
IDC |
31.2027498 |
30.62765 |
107.018 |
0.4295299 |
0.4200084 |
0.029 |
-0.1585578 |
-0.1799812 |
0.149 | |||||
56 |
Dev6 |
ILC |
30.3165057 |
29.31353 |
75.018 |
0.844 |
0.3939171 |
0.3640872 |
0.066 |
0.617 |
-0.2386865 |
-0.3058038 |
0.336 |
0.617 |
IDC |
31.100533 |
30.76736 |
106.621 |
0.4278925 |
0.422377 |
0.029 |
-0.1622418 |
-0.1746517 |
0.148 |
No |
Parameter |
Jenis |
Transformasi | |||||||||||
Tidak |
Biner |
Bipolar | ||||||||||||
Mean |
Median |
Variance |
P |
Mean |
Median Variance |
P |
Mean |
Median |
Variance |
P | ||||
57 |
Dev7 |
ILC |
30.2518243 |
29.26637 |
77.226 |
0.765 |
0.3956791 |
0.3669498 |
0.066 |
0.04 |
-0.2347221 |
-0.2993629 |
0.332 |
0.04 |
IDC |
31.5819366 |
30.89529 |
133.63 |
0.298055 |
0.2913614 |
0.013 |
-0.4543762 |
-0.4694368 |
0.064 | |||||
58 |
Dev8 |
ILC |
30.1991443 |
29.33026 |
79.463 |
0.835 |
0.3978004 |
0.3729603 |
0.065 |
0.676 |
-0.2299491 |
-0.2858393 |
0.329 |
0.676 |
IDC |
31.0323292 |
30.79917 |
107.529 |
0.4260945 |
0.4222572 |
0.029 |
-0.1662874 |
-0.1749212 |
0.147 | |||||
59 |
Dev9 |
ILC |
30.1733129 |
29.379 |
81.322 |
0.836 |
0.3987856 |
0.3764222 |
0.064 |
0.696 |
-0.2277323 |
-0.2780501 |
0.326 |
0.696 |
IDC |
30.9988406 |
30.82216 |
107.517 |
0.4251293 |
0.4222379 |
0.029 |
-0.168459 |
-0.1749647 |
0.146 | |||||
60 |
Dev10 |
ILC |
30.1827486 |
29.43967 |
83.137 |
0.829 |
0.3995413 |
0.378909 |
0.064 |
0.702 |
-0.2260321 |
-0.2724547 |
0.324 |
0.702 |
IDC |
31.0513794 |
30.7772 |
108.334 |
0.4252601 |
0.4207975 |
0.029 |
-0.1681648 |
-0.1782056 |
0.145 | |||||
61 |
EntrHd1 |
ILC |
1.5202071 |
1.52593 |
0.006 |
0.894 |
0.4872385 |
0.5079989 |
0.079 |
0.874 |
-0.0287133 |
0.0179976 |
0.401 |
0.874 |
IDC |
1.5257865 |
1.52902 |
0.012 |
0.4759863 |
0.4812369 |
0.031 |
-0.0540308 |
-0.0422169 |
0.159 | |||||
62 |
EntrHd2 |
ILC |
1.6125686 |
1.60524 |
0.006 |
0.842 |
0.5014461 |
0.4706003 |
0.105 |
0.966 |
0.0032537 |
-0.0661493 |
0.531 |
0.966 |
IDC |
1.6213262 |
1.62581 |
0.013 |
0.4987471 |
0.504668 |
0.023 |
-0.002819 |
0.0105029 |
0.116 | |||||
63 |
EntrHd3 |
ILC |
1.6695557 |
1.65913 |
0.006 |
0.838 |
0.485522 |
0.4415061 |
0.108 |
0.647 |
-0.0325754 |
-0.1316112 |
0.549 |
0.647 |
IDC |
1.6791019 |
1.68527 |
0.015 |
0.5140367 |
0.5215805 |
0.022 |
0.0315826 |
0.0485561 |
0.113 | |||||
64 |
EntrHd4 |
ILC |
1.7120586 |
1.7016 |
0.007 |
0.859 |
0.4705511 |
0.4284261 |
0.106 |
0.369 |
-0.0662601 |
-0.1610412 |
0.534 |
0.369 |
IDC |
1.7207762 |
1.72476 |
0.016 |
0.5265654 |
0.5312314 |
0.023 |
0.0597722 |
0.0702707 |
0.114 | |||||
65 |
EntrHd5 |
ILC |
1.7447471 |
1.73261 |
0.007 |
0.87 |
0.4453656 |
0.3990362 |
0.101 |
0.156 |
-0.1229275 |
-0.2271686 |
0.513 |
0.156 |
IDC |
1.7530858 |
1.76709 |
0.018 |
0.534961 |
0.550971 |
0.023 |
0.0786622 |
0.1146848 |
0.118 | |||||
66 |
EntrHd6 |
ILC |
1.77156 |
1.75784 |
0.007 |
0.887 |
0.4391865 |
0.3900197 |
0.096 |
0.118 |
-0.1368303 |
-0.2474557 |
0.487 |
0.118 |
IDC |
1.7790535 |
1.79565 |
0.019 |
0.5394465 |
0.5582517 |
0.024 |
0.0887546 |
0.1310662 |
0.123 | |||||
67 |
EntrHd7 |
ILC |
1.7942429 |
1.78007 |
0.008 |
0.954 |
0.4378096 |
0.390478 |
0.092 |
0.084 |
-0.1399284 |
-0.2464245 |
0.464 |
0.084 |
IDC |
1.7974672 |
1.82169 |
0.021 |
0.5504617 |
0.57697 |
0.025 |
0.1135389 |
0.1731824 |
0.128 | |||||
68 |
EntrHd8 |
ILC |
1.8133386 |
1.79692 |
0.009 |
0.918 |
0.4253529 |
0.3731808 |
0.089 |
0.062 |
-0.1679559 |
-0.2853432 |
0.453 |
0.062 |
IDC |
1.8190492 |
1.84186 |
0.021 |
0.548879 |
0.5744785 |
0.026 |
0.1099777 |
0.1675766 |
0.133 | |||||
69 |
EntrHd9 |
ILC |
1.8293657 |
1.80894 |
0.009 |
0.923 |
0.4184739 |
0.3559167 |
0.087 |
0.039 |
-0.1834337 |
-0.3241874 |
0.439 |
0.039 |
IDC |
1.8348149 |
1.84937 |
0.022 |
0.5569425 |
0.5732015 |
0.027 |
0.1281206 |
0.1647034 |
0.137 | |||||
70 |
EntrHd10 |
ILC |
1.8435843 |
1.81999 |
0.01 |
0.93 |
0.4121882 |
0.3415625 |
0.085 |
0.023 |
-0.1975765 |
-0.3564843 |
0.431 |
0.023 |
IDC |
1.8486772 |
1.85735 |
0.023 |
0.5670632 |
0.5767132 |
0.028 |
0.1508923 |
0.1726046 |
0.142 | |||||
71 |
MaHd1 |
ILC |
0.0362171 |
0.03479 |
0 |
0.758 |
0.5013922 |
0.4395777 |
0.073 |
0.293 |
0.0031325 |
-0.1359502 |
0.372 |
0.293 |
IDC |
0.0373317 |
0.03535 |
0 |
0.424325 |
0.3856585 |
0.034 |
-0.1702688 |
-0.2572683 |
0.172 | |||||
72 |
MaHd2 |
ILC |
0.0297257 |
0.02914 |
0 |
0.892 |
0.4684077 |
0.4305892 |
0.101 |
-0.0710827 |
-0.1561743 |
0.511 |
0.25 | |
IDC |
0.0301529 |
0.02903 |
0 |
0.3940578 |
0.3725926 |
0.025 |
-0.23837 |
-0.2866667 |
0.124 | |||||
73 |
MaHd3 |
ILC |
0.0262943 |
0.02578 |
0 |
0.948 |
0.4470491 |
0.4073359 |
0.119 |
0.227 |
-0.1191395 |
-0.2084942 |
0.603 |
0.227 |
IDC |
0.0264829 |
0.02491 |
0 |
0.3724164 |
0.3422265 |
0.021 |
-0.287063 |
-0.3549904 |
0.108 | |||||
74 |
MaHd4 |
ILC |
0.0239829 |
0.02347 |
0 |
0.944 |
0.4561356 |
0.4153923 |
0.112 |
0.112 |
-0.0986949 |
-0.1903674 |
0.567 |
0.112 |
IDC |
0.0241821 |
0.02256 |
0 |
0.3594154 |
0.3277344 |
0.021 |
-0.3163153 |
-0.3875977 |
0.105 | |||||
75 |
MaHd5 |
ILC |
0.0223143 |
0.02196 |
0 |
0.943 |
0.463004 |
0.4332634 |
0.116 |
0.073 |
-0.0832409 |
-0.1501574 |
0.588 |
0.073 |
IDC |
0.0225104 |
0.0209 |
0 |
0.3525976 |
0.3202112 |
0.021 |
-0.3316555 |
-0.4045249 |
0.107 | |||||
76 |
MaHd6 |
ILC |
0.0210329 |
0.02076 |
0 |
0.942 |
0.4726601 |
0.4491379 |
0.113 |
0.048 |
-0.0615148 |
-0.1144397 |
0.573 |
0.048 |
IDC |
0.0212292 |
0.01966 |
0 |
0.3495413 |
0.3167971 |
0.022 |
-0.338532 |
-0.4122066 |
0.111 | |||||
77 |
MaHd7 |
ILC |
0.0200086 |
0.01979 |
0 |
0.925 |
0.479655 |
0.4616099 |
0.106 |
0.035 |
-0.0457762 |
-0.0863777 |
0.536 |
0.035 |
IDC |
0.0202617 |
0.0186 |
0 |
0.3467379 |
0.3109346 |
0.023 |
-0.3448397 |
-0.4253973 |
0.116 | |||||
78 |
MaHd8 |
ILC |
0.0190671 |
0.01916 |
0 |
0.896 |
0.4927047 |
0.5004145 |
0.107 |
0.023 |
-0.0164145 |
0.0009326 |
0.542 |
0.023 |
IDC |
0.019414 |
0.01761 |
0 |
0.3205431 |
0.3055025 |
0.024 |
-0.3464577 |
-0.4376193 |
0.122 | |||||
79 |
MaHd9 |
ILC |
0.0184157 |
0.01862 |
0 |
0.894 |
0.5096228 |
0.5266112 |
0.098 |
0.008 |
0.0216513 |
0.0598753 |
0.497 |
0.008 |
IDC |
0.0187663 |
0.01691 |
0 |
0.3390999 |
0.2970555 |
0.024 |
-0.3620251 |
-0.4566251 |
0.123 | |||||
80 |
MaHd10 |
ILC |
0.0178014 |
0.01787 |
0 |
0.891 |
0.5177947 |
0.5234327 |
0.092 |
0.004 |
0.0400382 |
0.0527235 |
0.467 |
0.004 |
IDC |
0.0181572 |
0.0166 |
0 |
0.3306607 |
0.2950885 |
0.024 |
-0.3810134 |
-0.4610508 |
0.122 | |||||
81 |
MeanHd1 |
ILC |
12.8764514 |
12.69063 |
6.686 |
0.919 |
0.4718734 |
0.4499186 |
0.093 |
0.302 |
-0.0632848 |
-0.1126831 |
0.473 |
0.302 |
IDC |
13.0044315 |
12.75173 |
10.813 |
0.4000379 |
0.3868078 |
0.03 |
-0.2249147 |
-0.2546824 |
0.15 | |||||
82 |
MeanHd2 |
ILC |
16.0138443 |
15.31215 |
12.042 |
0.864 |
0.4144238 |
0.3554289 |
0.085 |
0.675 |
-0.1925464 |
-0.3252849 |
0.431 |
0.675 |
IDC |
16.3007437 |
15.93095 |
19.002 |
0.3891373 |
0.3766495 |
0.022 |
-0.2494411 |
-0.2775387 |
0.11 | |||||
83 |
MeanHd3 |
ILC |
18.13839 |
17.39395 |
14.074 |
0.777 |
0.4218649 |
0.3621928 |
0.09 |
0.595 |
-0.1758039 |
-0.3100661 |
0.458 |
0.595 |
IDC |
18.7080357 |
18.18911 |
27.557 |
0.3902687 |
0.3760328 |
0.021 |
-0.2468954 |
-0.2789262 |
0.105 | |||||
84 |
MeanHd4 |
ILC |
19.8918086 |
19.11603 |
16.885 |
0.729 |
0.4249895 |
0.3678467 |
0.092 |
0.598 |
-0.1687735 |
-0.297345 |
0.464 |
0.598 |
IDC |
20.6860886 |
20.12614 |
35.803 |
0.3936045 |
0.380135 |
0.021 |
-0.2393898 |
-0.2696962 |
0.105 | |||||
85 |
MeanHd5 |
ILC |
21.4161543 |
20.49822 |
20.516 |
0.71 |
0.4147857 |
0.3535679 |
0.091 |
0.748 |
-0.1917321 |
-0.3294722 |
0.462 |
0.748 |
IDC |
22.3636332 |
21.79929 |
44.238 |
0.3955253 |
0.3832088 |
0.021 |
-0.2350681 |
-0.2627802 |
0.107 | |||||
86 |
MeanHd6 |
ILC |
22.7707043 |
21.75637 |
24.159 |
0.689 |
0.4100903 |
0.3478705 |
0.091 |
0.837 |
-0.2022968 |
-0.3422914 |
0.46 |
0.837 |
IDC |
23.8832428 |
23.98883 |
52.67 |
0.3976166 |
0.3997647 |
0.022 |
-0.2303627 |
-0.2255293 |
0.11 | |||||
87 |
MeanHd7 |
ILC |
23.9815157 |
22.72467 |
29.036 |
0.679 |
0.4076298 |
0.3382207 |
0.089 |
0.914 |
-0.2078329 |
-0.3640034 |
0.448 |
0.914 |
IDC |
25.2233172 |
25.22936 |
61.185 |
0.4009549 |
0.4010711 |
0.023 |
-0.2228516 |
-0.2225899 |
0.115 | |||||
88 |
MeanHd8 |
ILC |
25.0965229 |
23.68165 |
33.574 |
0.677 |
0.3986875 |
0.3267356 |
0.087 |
0.928 |
-0.227953 |
-0.3898449 |
0.44 |
0.928 |
IDC |
26.4331844 |
26.4097 |
69.869 |
0.4043851 |
0.4039505 |
0.024 |
-0.2151336 |
-0.2161114 |
0.121 | |||||
89 |
MeanHd9 |
ILC |
26.0930457 |
24.36689 |
37.984 |
0.67 |
0.393102 |
0.3116336 |
0.085 |
0.769 |
-0.2405205 |
-0.4238245 |
0.428 |
0.769 |
IDC |
27.5453989 |
27.07163 |
79.037 |
0.4119817 |
0.4035183 |
0.025 |
-0.1980412 |
-0.2170839 |
0.128 | |||||
90 |
MeanHd10 |
ILC |
27.0679543 |
25.02286 |
42.727 |
0.68 |
0.6533958 |
0.2954087 |
0.084 |
0.595 |
-0.2567234 |
-0.4603305 |
0.424 |
0.595 |
IDC |
28.5556697 |
27.35412 |
88.345 |
0.4212323 |
0.4002156 |
0.027 |
-0.1772273 |
-0.2245149 |
0.137 |
Untuk memilih parameter yang signifikan yang benar-benar mampu membedakan IDC dan ILC dari ketiga jenis data pada table 1, kami mengambil nilai yang P value < 0.05, hasilnya seperti table 2.
Table 2. Parameter yang Signifikan | |
Jenis Data |
Parameter signifikan |
Tidak ditransformasi |
Mean 1, mean 2, mean 3 dan mean 4 |
Ditarnsformasi Biner |
MA 2, MA 3, MA 4, MA 5, MA 6, MA 7, MA 8, MA 9, MA 10, MD 2, MD 4, EntrHd 9, EntrHd 10, MAHd 6, MaHd 7, MAHd 8, MAHd 9, MAHd 10 |
Ditransformasi Bipolar |
MA 2, MA 3, MA 4, MA 5, MA 6, MA 7, MA 8, MA 9, MA 10, MD 2, MD 4, DEV 7, EntrHd 9, EntrHd 10, MAHd 6, MaHd 7, MAHd 8, MAHd 9, MAHd 10 |
3.1 Hasil
Hasil visualisasi IDC dan ILC dengan cara memisahan background dengan massa yang mencurigakan ternyata memiliki visual yang berbeda seperti gambar 1.
IDC
ILC
Gambar 1. IDC dan ILC
Hasil perhitungan parameter fisis menggunakan persamaan (1) sampai (10) diperoleh ring nilai parameter fisi seperti table 3.
Table 3. Range Nilai Besaran Fisis Film ILC dan IDC untuk Data Tidak Dinormalisasi
No |
Besaran Fisis |
ILC |
IDC |
1 |
Entropy |
3.49541- 3.79207 |
3.1047 - 3.93558 |
2 |
Contrast |
151.01428- 3024.44113 |
86.08063- 4736.43024 |
3 |
Moment anguler kedua |
0.00019- 0.00073 |
0.00013- 0.0009 |
4 |
Moment Differensial Invers. |
0.02213- 0.06482 |
0.0113- 0.392 |
5 |
Mean. |
127.05144- 182.39332 |
71.16284- 210.21205 |
6 |
Deviation. |
19.39466- 48.20695 |
11.06751- 93.33126 |
7 |
Entropy of Hdiff. |
1.41346- 2.00655 |
1.29424- 2.1479 |
8 |
moment anguler of Hdiff |
0.01272- 0.04542 |
0.00806 - 0.06171 |
9 |
Mean of Hdiff |
9.72898- 38.68645 |
7.27355- 55.92737 |
3.2 Diskusi
Dari gambar 1 terlihat ada perbedaan visual IDC dengan ILC dilihat dari puncak grafiknya, IDC mempunyai puncak lebih tinggi dari ILC. Dari table 3 terlihat range nilai parameter fisika ILC lebih
tinggi dari IDC. Dari table 1 terlihat besaran fisis yang berbengaruh untuk membedakan jenis histopatologi ILC dan IDC untuk data tidak ditransformasi adalah mean1, mean2, mean3 dan mean4, sedangkan yang ditransformasi Biner adalah MA 2, MA 3, MA 4, MA 5, MA 6, MA 7, MA 8, MA 9, MA 10, MD 2, MD 4, EntrHd 9, EntrHd 10, MAHd 6, MaHd 7, MAHd 8, MAHd 9, MAHd 10, sedangkan untuk Bipolar adalah MA 2, MA 3, MA 4, MA 5, MA 6, MA 7, MA 8, MA 9, MA 10, MD 2, MD 4,DEV 7, EntrHd 9, EntrHd 10, MAHd 6, MaHd 7, MAHd 8, MAHd 9, MAHd 10 Untuk penelitian berikutnya kami akan menggunakan parameter fisik yang signifikan ini sebagai parameter masukkan dari metode JST Backpropagation untuk TA kami, dan kami akan menguji kinerja dari metode JST Backpropagation, dengan cara menghitung nilai Accuracy, Sensitivity, Specificity dan precission.
-
4. Kesimpulan
Dari visul grafik IDC mempunyai puncak lebih tinggi dari ILC, range nilai parameter fisika ILC lebih tinggi dari IDC, besaran fisis yang berbengaruh untuk membedakan jenis histopatologi ILC dan IDC adalah mean1, mean2, mean3 dan mean4, sedangkan yang ditransformasi Biner adalah MA 2, MA 3, MA 4, MA 5, MA 6, MA 7, MA 8, MA 9, MA 10, MD 2, MD 4, EntrHd 9, EntrHd 10, MAHd 6, MaHd 7, MAHd 8, MAHd 9, MAHd 10, sedangkan untuk Bipolar adalah MA 2, MA 3, MA 4, MA 5, MA 6, MA 7, MA 8, MA 9, MA 10, MD 2, MD 4,DEV 7, EntrHd 9, EntrHd 10, MAHd 6, MaHd 7, MAHd 8, MAHd 9, MAHd 10.
Daftar Pustaka
-
[1] F. Eddaoudi and F. Regragui, “Microcalcifications Detection in Mammographic Images
Using Texture Coding,” 2011.
-
[2] B. Senthilkumar and G. Umamaheswari, “A Novel Edge Detection Algorithm for the
Detection of Breast Cancer,” 2011. [Online]. Available:
http://www.eurojournals.com/ejsr.htm
-
[3] B. Charan Patel, “An Adaptive K-means Clustering Algorithm for Breast Image
Segmentation,” 2010.
-
[4] B. Charan Patel, “Early Detection of Breast Cancer using Self Similar Fractal Method,”
2010.
-
[5] D. Sankar and T. Thomas, “Fractal Features based on Differential Box Counting Method
for the Categorization of Digital Mammograms.” [Online]. Available: http://www.mirlabs.org/ijcisim
-
[6] J. June June, “Detection of Microcalcification Clusters in Mammograms using Neural
Network,” 2010.
-
[7] “Dr.H.B.Kekre_print”.
-
[8] F. Eddaoudi, F. Regragui, A. Mahmoudi, and N. Lamouri, “Masses Detection Using SVM
Classifier Based on Textures Analysis,” 2011.
-
[9] M. Nielsen et al., “A novel and automatic mammographic texture resemblance marker is
an independent risk factor for breast cancer,” Cancer Epidemiol, vol. 35, no. 4, pp. 381– 387, Aug. 2011, doi: 10.1016/j.canep.2010.10.011.
-
[10] M. Vasantha, D. V Subbiah Bharathi, and R. Dhamodharan, “Medical Image Feature, Extraction, Selection and Classification,” 2010.
-
[11] P. H. Tsui, Y. Y. Liao, C. C. Chang, W. H. Kuo, K. J. Chang, and C. K. Yeh, “Classification of benign and malignant breast tumors by 2-D analysis based on contour description and scatterer characterization,” IEEE Trans Med Imaging, vol. 29, no. 2, pp. 513–522, Feb. 2010, doi: 10.1109/TMI.2009.2037147.
-
[12] R. Krishnamoorthy, N. Amudhavalli, and M. K. Sivakolundu, “Identification of Microcalcifications with Orthogonal Polynomials Model,” 2010.
-
[13] K. Sujatha and V. C. Sumitha, Dual Tree Complex with Modified Complex Ridgelets for Image Denoising in Digital Mammographic Images. 2007.
-
[14] Y. Zheng, “Breast cancer detection with gabor features from digital Mammograms,” Algorithms, vol. 3, no. 1, pp. 44–62, Mar. 2010, doi: 10.3390/a3010044.
-
[15] S. Saheb Basha and D. K. Satya Prasad, “Automatic Detection of Breast Cancer Mass In Mammograms Using Morphological Operators And Fuzzy C-Means Clustering,” 2005. [Online]. Available: www.jatit.org
-
[16] “classification of the medical images by the kohonen network SOM and LVQ”.
-
[17] S. Bouyahia, J. Mbainaibeye, and N. Ellouze, “Wavelet Based Microcalcifications Detection in Digitized Mammograms.” [Online]. Available: http://www.enit.rnu.tn
-
[18] A. A. N. Gunawan, S. Poniman, and I. W. Supardi, “Classification of breast cancer grades using physical parameters and K-nearest neighbor method,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 17, no. 2, pp. 637–644, Apr. 2019, doi: 10.12928/Telkomnika.V17I2.9797.
916
Discussion and feedback